Literatura académica sobre el tema "Optoacoustic Imaging"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Optoacoustic Imaging".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Optoacoustic Imaging"

1

ESENALIEV, RINAT O. "BIOMEDICAL OPTOACOUSTICS". Journal of Innovative Optical Health Sciences 04, n.º 01 (enero de 2011): 39–44. http://dx.doi.org/10.1142/s1793545811001253.

Texto completo
Resumen
Optoacoustics is a promising modality for biomedical imaging, sensing, and monitoring with high resolution and contrast. In this paper, we present an overview of our studies for the last two decades on optoacoustic effects in tissues and imaging capabilities of the optoacoustic technique. In our earlier optoacoustic works we studied laser ablation of tissues and tissue-like media and proposed to use optoacoustics for imaging in tissues. In mid-90s we demonstrated detection of optoacoustic signals from tissues at depths of up to several centimeters, well deeper than the optical diffusion limit. We then obtained optoacoustic images of tissues both in vitro and in vivo. In late 90s we studied optoacoustic monitoring of thermotherapy: hyperthermia, coagulation, and freezing. Then we proposed and studied optoacoustic monitoring of blood oxygenation, hemoglobin concentration, and other physiologic parameters.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Roberts, Sheryl, Chrysafis Andreou, Crystal Choi, Patrick Donabedian, Madhumitha Jayaraman, Edwin C. Pratt, Jun Tang et al. "Sonophore-enhanced nanoemulsions for optoacoustic imaging of cancer". Chemical Science 9, n.º 25 (2018): 5646–57. http://dx.doi.org/10.1039/c8sc01706a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Laramie, Matt, Mary Smith, Fahad Marmarchi, Lacey McNally y Maged Henary. "Small Molecule Optoacoustic Contrast Agents: An Unexplored Avenue for Enhancing In Vivo Imaging". Molecules 23, n.º 11 (25 de octubre de 2018): 2766. http://dx.doi.org/10.3390/molecules23112766.

Texto completo
Resumen
Almost every variety of medical imaging technique relies heavily on exogenous contrast agents to generate high-resolution images of biological structures. Organic small molecule contrast agents, in particular, are well suited for biomedical imaging applications due to their favorable biocompatibility and amenability to structural modification. PET/SPECT, MRI, and fluorescence imaging all have a large host of small molecule contrast agents developed for them, and there exists an academic understanding of how these compounds can be developed. Optoacoustic imaging is a relatively newer imaging technique and, as such, lacks well-established small molecule contrast agents; many of the contrast agents used are the same ones which have found use in fluorescence imaging applications. Many commonly-used fluorescent dyes have found successful application in optoacoustic imaging, but others generate no detectable signal. Moreover, the structural features that either enable a molecule to generate a detectable optoacoustic signal or prevent it from doing so are poorly understood, so design of new contrast agents lacks direction. This review aims to compile the small molecule optoacoustic contrast agents that have been successfully employed in the literature to bridge the information gap between molecular design and optoacoustic signal generation. The information contained within will help to provide direction for the future synthesis of optoacoustic contrast agents.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Regensburger, Adrian P., Emma Brown, Gerhard Krönke, Maximilian J. Waldner y Ferdinand Knieling. "Optoacoustic Imaging in Inflammation". Biomedicines 9, n.º 5 (28 de abril de 2021): 483. http://dx.doi.org/10.3390/biomedicines9050483.

Texto completo
Resumen
Optoacoustic or photoacoustic imaging (OAI/PAI) is a technology which enables non-invasive visualization of laser-illuminated tissue by the detection of acoustic signals. The combination of “light in” and “sound out” offers unprecedented scalability with a high penetration depth and resolution. The wide range of biomedical applications makes this technology a versatile tool for preclinical and clinical research. Particularly when imaging inflammation, the technology offers advantages over current clinical methods to diagnose, stage, and monitor physiological and pathophysiological processes. This review discusses the clinical perspective of using OAI in the context of imaging inflammation as well as in current and emerging translational applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Bell, Gavin, Ghayathri Balasundaram, Amalina Binte Ebrahim Attia, Francesca Mandino, Malini Olivo y Ivan P. Parkin. "Functionalised iron oxide nanoparticles for multimodal optoacoustic and magnetic resonance imaging". Journal of Materials Chemistry B 7, n.º 13 (2019): 2212–19. http://dx.doi.org/10.1039/c8tb02299b.

Texto completo
Resumen
The synthesis of iron oxide (Fe3O4) nanoparticles conjugated with an optoacoustic molecule to give multimodal imaging of magnetic resonance imaging (MRI) and multispectral optoacoustic tomography (MSOT).
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Tzoumas, Stratis y Vasilis Ntziachristos. "Spectral unmixing techniques for optoacoustic imaging of tissue pathophysiology". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 375, n.º 2107 (16 de octubre de 2017): 20170262. http://dx.doi.org/10.1098/rsta.2017.0262.

Texto completo
Resumen
A key feature of optoacoustic imaging is the ability to illuminate tissue at multiple wavelengths and therefore record images with a spectral dimension. While optoacoustic images at single wavelengths reveal morphological features, in analogy to ultrasound imaging or X-ray imaging, spectral imaging concedes sensing of intrinsic chromophores and externally administered agents that can reveal physiological, cellular and subcellular functions. Nevertheless, identification of spectral moieties within images obtained at multiple wavelengths requires spectral unmixing techniques, which present a unique mathematical problem given the three-dimensional nature of the optoacoustic images. Herein we discuss progress with spectral unmixing techniques developed for multispectral optoacoustic tomography. We explain how different techniques are required for accurate sensing of intrinsic tissue chromophores such as oxygenated and deoxygenated haemoglobin versus extrinsically administered photo-absorbing agents and nanoparticles. Finally, we review recent developments that allow accurate quantification of blood oxygen saturation (sO 2 ) by transforming and solving the sO 2 estimation problem from the spatial to the spectral domain. This article is part of the themed issue ‘Challenges for chemistry in molecular imaging’.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Nunes, Antonio, Vikram J. Pansare, Nicolas Beziere, Argiris Kolokithas Ntoukas, Josefine Reber, Matthew Bruzek, John Anthony, Robert K. Prud’homme y Vasilis Ntziachristos. "Quenched hexacene optoacoustic nanoparticles". Journal of Materials Chemistry B 6, n.º 1 (2018): 44–55. http://dx.doi.org/10.1039/c7tb02633a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Vogt, Nina. "Optoacoustic imaging of neural activity". Nature Methods 16, n.º 5 (30 de abril de 2019): 362. http://dx.doi.org/10.1038/s41592-019-0415-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mishra, Kanuj, Juan Pablo Fuenzalida-Werner, Vasilis Ntziachristos y Andre C. Stiel. "Photocontrollable Proteins for Optoacoustic Imaging". Analytical Chemistry 91, n.º 9 (abril de 2019): 5470–77. http://dx.doi.org/10.1021/acs.analchem.9b01048.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Butler, Reni, Philip T. Lavin, F. Lee Tucker, Lora D. Barke, Marcela Böhm-Vélez, Stamatia Destounis, Stephen R. Grobmyer et al. "Optoacoustic Breast Imaging: Imaging-Pathology Correlation of Optoacoustic Features in Benign and Malignant Breast Masses". American Journal of Roentgenology 211, n.º 5 (noviembre de 2018): 1155–70. http://dx.doi.org/10.2214/ajr.17.18435.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Optoacoustic Imaging"

1

Tomaszewski, Michal Robert. "Functional imaging of cancer using Optoacoustic Tomography". Thesis, University of Cambridge, 2019. https://www.repository.cam.ac.uk/handle/1810/284931.

Texto completo
Resumen
Poor oxygenation of solid tumours has been linked with resistance to chemo- and radio-therapy and poor patient outcomes. Measuring the functional status of the tumour vasculature, including blood flow fluctuations and changes in oxygenation is important in cancer staging and therapy monitoring. A robust method is needed for clinical non-invasive measurement of the oxygen supply and demand in tumours. Current clinically approved imaging modalities suffer high cost, long procedure times and limited spatio-temporal resolution. Optoacoustic tomography (OT) is an emerging clinical imaging modality that can provide static images of endogenous haemoglobin concentration and oxygenation. In this work, an integrated framework for quantitative analysis of functional imaging using OT is developed and applied in vivo with preclinical cancer models. Oxygen Enhanced (OE)-OT is established here to provide insight into tumour vascular function and oxygen availability in the tissue. Tracking oxygenation dynamics using OE-OT reveals significant differences between two prostate cancer models in nude mice with markedly different vascular function (PC3 & LNCaP), which appear identical in static OT. OE-OT metrics are shown to be highly repeatable and correlate directly on a per-tumour basis to tumour vascular maturity, hypoxia and necrosis, assessed ex vivo. Dynamic Contrast Enhanced (DCE) OT demonstrates the relationship between OE-OT response and tumour perfusion in vivo. Finally, the possibility of using OT data acquired at longer wavelengths to report on tumour water and lipid content is investigated, with a view to future providing intrinsically co-registered imaging of tumour oxygenation and cellular necrosis. These findings indicate that OE-OT holds potential for application in prostate cancer patients, to improve delineation of aggressive and indolent disease, while combined with DCE-OT, it may offer significant advantage for localised imaging of tumour response to vascular targeted therapies. Further work is needed to establish whether OT can provide a new method to detect tumour necrosis in vivo.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Gertsch, Andreas Gustav. "Contrast enhancement in optoacoustic imaging using nano particles /". Bern : [s.n.], 2007. http://www.ub.unibe.ch/content/bibliotheken_sammlungen/sondersammlungen/dissen_bestellformular/index_ger.html.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Abeyakoon, Oshaani Vayanthimala. "Clinical translation of optoacoustic imaging in breast cancer". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/276973.

Texto completo
Resumen
Optoacoustic (OA) imaging is an emerging low-cost hybrid imaging investigation/technique currently in clinical feasibility studies for breast cancer diagnosis and staging. The technique applies pulsed light to the tissue of interest where molecules absorb the light photons and generate acoustic pressure waves. The resulting acoustic responses are detected using ultrasound transducers and converted into images. Image contrast within a pixel is dependent on the relative concentration and absorption characteristics (i.e. spectrum) of the chromophores within the illuminated tissue. Thus, tissue responses from illumination using multiple wavelengths, chosen to reflect the differential absorption of oxy-/deoxy- and total haemoglobin, can be measured. In turn, these signals can be regarded as surrogate measures of tissue hypoxia and neoangiogenesis, hallmarks of cancer associated with adverse outcomes. The aim of this PhD was to translate optoacoustic imaging into the breast clinic to try and fulfil some of the unmet clinical needs in breast cancer imaging using the imaging biomarker roadmap by O'Connor et al. Translation of this new technology to the clinical environment required extensive preparatory work, including the procurement and installation of a scanner prototype, liaison with UK regulatory bodies to secure ethical and MHRA approval, as well as several technical developments (performed during the course of the PhD) to make the technology suitable for breast cancer imaging. The first chapter of the thesis reviews the unmet needs of breast cancer imaging, being followed by a summary of recent techniques and technologies that may potentially fulfil gaps in knowledge and address some of the specific diagnostic challenges in breast cancer imaging. The capabilities of optoacoustic imaging are then discussed in the context of this evolving landscape of new imaging techniques and technologies with a particular focus on the tumour biology (neoangiogenesis and hypoxia) that can be measured in humans using multimodality and multi parametric imaging. Chapter 2 reviews of the current state of clinical translation of optoacoustic imaging, highlighting the particular areas in which clinical translation has advanced the most (breast cancer, melanoma and inflammatory bowel disease). Chapter 3 discusses the logistical, regulatory and technical challenges and solutions involved in translating optoacoustic imaging to the clinic and setting up a clinical service. Chapter 4 presents a series of validation experiments of oxygen saturation aimed at establishing the relationship between the optoacoustic signal and invasive pO2 measurements with an OxyLite probe in a porcine kidney model. This work was conducted in close collaboration with leading clinicians from the local transplant team. The following chapter describes the results of the first stage of our clinical work in the breast, namely the healthy volunteer study. This part had several aims: to perform qualitative assessment of the optoacoustic features of the normal breast under physiological conditions; to establish a robust scanning technique and identify technical and image interpretation pitfalls; and to perform qualitative evaluation of the hormonal changes that occur during the menstrual cycle and menopause, which, in turn, were used to validate surrogate measures of oxy-, deoxy and total haemoglobin. Chapter 6 then focuses on the qualitative assessment of benign and malignant breast lesions and their appearances on optoacoustic imaging. The patient study was divided into three phases. Phase 1 created a feature set to differentiate benign from malignant lesions, while Phase 2 was a transition between the prototype scanner and the installation of the first-generation clinical scanner. In Phase 3 the feature set created in Phase 1 was validated in a reader study. The sensitivity and specificity of optoacoustic imaging for lesion detection and differentiation of benign from malignant lesions was compared with mammography and ultrasound. Chapter 7 then deals with the quantitative analysis of the Phase 1 and Phase 3 data acquired in Chapter 6, assessing the relationships between the use of single wavelengths, spectral unmixing, vascularity versus receptor status, heterogeneity of signal intensity in relation to tumour stage and grade. This chapter also discusses the potential and limitations of quantifying the optoacoustic signal and leads to the final chapter, a discussion of future directions in optoacoustic imaging in breast cancer. At the end of this thesis, chapter 8 briefly discusses the potential future directions for the use of optoacoustic imaging as a clinical and scientific tool.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Azizian, Kalkhoran Mohammad. "Design and development of a universal handheld probe for optoacoustic-ultrasonic 3D imaging". Thesis, Lyon, 2017. http://www.theses.fr/2017LYSEI027/document.

Texto completo
Resumen
La présente dissertation est principalement consacrée à la conception et à la caractérisation d’une sonde universelle pour l’imagerie volumétrique ultrasons-optoacoustique et le développement d’un algorithme de reconstruction adapté aux exigences physiques pour la conception du système. Les traits distinctifs de cette dissertation sont l’introduction d’une nouvelle géométrie pour les sondes manuelles ultrasons-optoacoustique et des évaluations systématiques basées sur des méthodes de pré-reconstruction et post-reconstruction. Pour éviter l’interprétation biaisée, une évaluation capable d’évaluer le potentiel de la sonde doit être faite. Les caractéristiques mentionnées établissent un cadre pour l’évaluation des performances du système d’imagerie d’une manière précise. En outre, elle permet d’optimiser les performances suivant l’objectif fixé. Ainsi, deux algorithmes de reconstruction anticipée ont été élaborés pour la conception du système OPUS (optoacoustique ultrasons) capables de produire des images avec un contraste et une résolution homogènes sur tout le volume d’intérêt. L’intérêt d’avoir de tels algorithmes est principalement dû au fait que l’analyse des données médicales est souvent faite dans des conditions difficiles, car on est face au bruit, au faible contraste, aux projections limités et à des transformations indésirables opérées par les systèmes d’acquisition. Cette thèse montre, aussi, comment les artefacts de reconstruction peuvent être réduits en compensant les propriétés d’ouverture et en atténuant les artefacts dus à l’échantillonnage angulaire parcimonieux. Afin de transférer cette méthodologie à la clinique et de valider les résultats théoriques, une plate-forme d’imagerie expérimentale a été développée. En utilisant le système de mesure développé, l’évolution d’une nouvelle géométrie annulaire parcimonieuse et sa dynamique ont été étudiées et une preuve de concept a été démontrée à travers des mesures expérimentales dans le but d’évaluer les progrès réalisés
When the interest is in multiscale and multipurpose imaging, there exists such a will in integrating multi-modalilties into a synergistic paradigm in order to leverage the diagnostic values of the interrogating agents. Employing multiple wavelengths radiation, optoacoustic imaging benefits from the optical contrast to specifically resolve molecular structure of tissue in a non-invasive manner. Hybridizing optoacoustic and ultrasound imaging comes with the promises of delivering the complementary morphological, functional and metabolic information of the tissue. This dissertation is mainly devoted to the design and characterization of a hybridized universal handheld probe for optoacoustic ultrasound volumetric imaging and developing adaptive reconstruction algorithms toward the physical requirements of the designed system. The distinguishing features of this dissertation are the introduction of a new geometry for optoacoustic ultrasonic handheld probe and systematic assessments based on pre and post reconstruction methods. To avoid the biased interpretation, a de facto performance assessment being capable of evaluating the potentials of the designed probe in an unbiased manner must be practiced. The aforementioned features establish a framework for characterization of the imaging system performance in an accurate manner. Moreover, it allows further task performance optimization as well. Correspondingly, two advanced reconstruction algorithms have been elaborated towards the requirement of the designed optoacoustic-ultrasound (OPUS) imaging system in order to maximize its ability to produce images with homogeneous contrast and resolution over the entire volume of interest. This interest is mainly due to the fact that the medical data analysis pipeline is often carried out in challenging conditions, since one has to deal with noise, low contrast, limited projections and undesirable transformations operated by the acquisition system. The presented thesis shows how reconstruction artifacts can be reduced by compensating for the detecting aperture properties and alleviate artifacts due to sparse angular sampling. In pursuit of transferring this methodology to clinic and validating the theoretical results, a synthetic imaging platform was developed. Using the measurement system, the evolution of a novel sparse annular geometry and its dynamics has been investigated and a proof of concept was demonstrated via experimental measurement with the intention of benchmarking progress
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Gao, Du Yang. "Engineering of protein-based multifunctional nanoparticles with near-infrared absorption as photoacoustic contrast agents for biological applications". Thesis, University of Macau, 2018. http://umaclib3.umac.mo/record=b3953810.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Montilla, Leonardo Gabriel. "Advanced Devices for Photoacoustic Imaging to Improve Cancer and Cerebrovascular Medicine". Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/312510.

Texto completo
Resumen
Recent clinical studies have demonstrated that photoacoustic imaging (PAI) provides important diagnostic information for breast cancer staging. Despite these promising studies, PAI remains an unfeasible option for clinics due to the cost to implement, the required large modification in user conduct and the inflexibility of the hardware to accommodate other applications for the incremental enhancement in diagnostic information. The research described in this dissertation addresses these issues by designing attachments to clinical ultrasound probes and incorporating custom detectors into commercial ultrasound scanners. The ultimate benefit of these handheld devices is to expand the capability of current ultrasound systems and facilitate the translation of PAI to enhance cancer diagnostics and neurosurgical outcomes. Photoacoustic enabling devices (PEDs) were designed as attachments to two clinical ultrasound probes optimized for breast cancer diagnostics. PAI uses pulsed laser excitation to create transient heating (<1°C) and thermoelastic expansion that is detected as an ultrasonic emission. These ultrasonic emissions are remotely sensed to construct noninvasive images with optical contrast at depths much greater than other optical modalities. The PEDs are feasible in terms of cost, user familiarity and flexibility for various applications. Another possible application for PAI is in assisting neurosurgeons treating aneurysms. Aneurysms are often treated by placing a clip to prevent blood flow into the aneurysm. However, this procedure has risks associated with damaging nearby vessels. One of the developed PEDs demonstrated the feasibility to three-dimensionally image tiny microvasculature (<0.3mm) beyond large blood occlusions (>2.4mm) in a phantom model. The capability to use this during surgery would suggest decreasing the risks associated with these treatments. However, clinical ultrasound arrays are not clinically feasible for microsurgical applications due to their bulky size and linear scanning requirements for 3D. Therefore, capacitive micromachined ultrasound transducer (CMUT) two-dimensional arrays compatible with standard ultrasound scanners were used to generate real-time 3D photoacoustic images. Future probes, designed incorporating CMUT arrays, would be relatively simple to fabricate and a convenient upgrade to existing clinical ultrasound equipment. Eventually, a handheld tool with the ability to visualize, in real-time 3D, the desired microvasculature, would assist surgical procedures. The potential implications of PAI devices compatible with standard ultrasound equipment would be a streamlined cost efficient solution for translating photoacoustics into clinical practice. The practitioner could then explore the benefits of the enhanced contrast adjunctive to current ultrasound applications. Clinical availability of PAI could enhance breast cancer diagnostics and cerebrovascular surgical outcomes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Oancea, Andreas [Verfasser], Vasilis [Akademischer Betreuer] Ntziachristos y Franz [Akademischer Betreuer] Pfeiffer. "Optoacoustic System and Method for Mesoscopic Imaging / Andreas Oancea. Gutachter: Franz Pfeiffer ; Vasilis Ntziachristos. Betreuer: Vasilis Ntziachristos". München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/1045730033/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wang, Xueding. "Functional photoacoustic tomography of animal brains". Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/2736.

Texto completo
Resumen
This research is primarily focused on laser-based non-invasive photoacoustic tomography of small animal brains. Photoacoustic tomography, a novel imaging modality, was applied to visualize the distribution of optical absorptions in small-animal brains through the skin and skull. This technique combines the high-contrast advantage of optical imaging with the high-resolution advantage of ultrasonic imaging. Based on the intrinsic optical contrast, this imaging system successfully visualized three-dimensional tissue structures in intact brains, including lesions and tumors in brain cerebral cortex. Physiological changes and functional activities in brains, including cerebral blood volume and blood oxygenation in addition to anatomical information, were also satisfactorily monitored. This technique successfully imaged the dynamic distributions of exogenous contrast agents in small-animal brains. Photoacoustic angiography in small-animal brains yielding high contrast and high spatial resolution was implemented noninvasively using intravenously injected absorbing dyes. In the appendix, the theory of Monte Carlo simulation of polarized light propagation in scattering media was briefly summarized.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Araque, Caballero Miguel Ángel [Verfasser], Vasilis [Akademischer Betreuer] Ntziachristos y Rudolf [Akademischer Betreuer] Gross. "Incorporating Sensor Properties in Optoacoustic Imaging / Miguel Angel Araque Caballero. Gutachter: Rudolf Gross ; Vasilis Ntziachristos. Betreuer: Vasilis Ntziachristos". München : Universitätsbibliothek der TU München, 2013. http://d-nb.info/104767873X/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Dima, Alexander [Verfasser], Vasilis [Akademischer Betreuer] Ntziachristos y Klaus [Akademischer Betreuer] Diepold. "Optoacoustic handheld imaging for clinical screening and intervention / Alexander Dima. Betreuer: Vasilis Ntziachristos. Gutachter: Klaus Diepold ; Vasilis Ntziachristos". München : Universitätsbibliothek der TU München, 2016. http://d-nb.info/1093788240/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Optoacoustic Imaging"

1

A, Oraevsky Alexander y Society of Photo-optical Instrumentation Engineers., eds. Biomedical optoacoustics II: 23-24 January 2001, San Jose, USA. Bellingham, Wash., USA: SPIE, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

A, Oraevsky Alexander y Society of Photo-optical Instrumentation Engineers., eds. Biomedical optoacoustics III: 20-21 January 2002, San Jose, USA. Bellingham, Wash., USA: SPIE, 2002.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

A, Oraevsky Alexander y Society of Photo-optical Instrumentation Engineers., eds. Biomedical optoacoustics IV: 26-27 January 2003, San Jose, California, USA. Bellingham, Wash., USA: SPIE, 2003.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Andreas, Mandelis, ed. Photoacoustic and thermal wave phenomena in semiconductors. New York: North-Holland, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

A, Oraevsky Alexander, Society of Photo-optical Instrumentation Engineers. y International Biomedical Optics Society, eds. Biomedical optoacoustics: 25-27 January 2000, San Jose, USA. Bellingham, Wash: SPIE, 2000.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

J, Bornhop Darryl y Society of Photo-optical Instrumentation Engineers., eds. Biomedical nanotechnology architectures and applications: 20-24 January 2002, San Jose, [California] USA. Bellingham, Wash: SPIE, 2002.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (9th 2008 San Jose, Calif.). Photons plus ultrasound: Imaging and sensing 2008 : the Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics : 20-23 January 2008, San Jose, California, USA. Editado por Oraevsky Alexander A, Wang Lihong V, SPIE (Society) y Fairway Medical Technologies Inc. Bellingham, Wash: SPIE, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics (9th 2008 San Jose, Calif.). Photons plus ultrasound: Imaging and sensing 2008 : the Ninth Conference on Biomedical Thermoacoustics, Optoacoustics, and Acousto-optics : 20-23 January 2008, San Jose, California, USA. Editado por Oraevsky Alexander A, Wang Lihong V, SPIE (Society) y Fairway Medical Technologies Inc. Bellingham, Wash: SPIE, 2008.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Photoacoustic imaging and spectroscopy. Boca Raton: Taylor & Francis, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Wang, Lihong V. Photoacoustic Imaging and Spectroscopy. Taylor & Francis Group, 2017.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Optoacoustic Imaging"

1

Frenz, M., M. Jaeger, A. Gertsch, M. Kitz y D. Schweizer. "Optoacoustic imaging". En Acoustical Imaging, 287–94. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-8823-0_40.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Omar, Murad, Dominik Soliman y Vasilis Ntziachristos. "Multimodal Optoacoustic Imaging". En Image Fusion in Preclinical Applications, 69–99. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-02973-9_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Razansky, Daniel. "Functional Optoacoustic Imaging". En Handbook of Neurophotonics, 129–46. First edition. | Boca Raton, FL : CRC Press, 2020. | Series: Series in cellular and clinical imaging: CRC Press, 2020. http://dx.doi.org/10.1201/9780429194702-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Napp, Joanna, Andrea Markus y Frauke Alves. "Optical and Optoacoustic Imaging". En Molecular Imaging in Oncology, 439–92. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Razansky, Daniel y Vasilis Ntziachristos. "Optical and Optoacoustic Imaging". En Molecular Imaging in Oncology, 155–87. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Eisenblätter, Michel y Moritz Wildgruber. "Optical and Optoacoustic Imaging Probes". En Molecular Imaging in Oncology, 337–55. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-42618-7_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Liopo, Anton V. y Alexander A. Oraevsky. "Nanoparticles as Contrast Agents for Optoacoustic Imaging". En Nanotechnology for Biomedical Imaging and Diagnostics, 111–49. Hoboken, NJ: John Wiley & Sons, Inc, 2015. http://dx.doi.org/10.1002/9781118873151.ch5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Taruttis, Adrian y Vasilis Ntziachristos. "Optical and Optoacoustic Imaging in the Diffusive Regime". En Handbook of Photonics for Biomedical Engineering, 1–21. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-6174-2_19-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Taruttis, Adrian y Vasilis Ntziachristos. "Optical and Optoacoustic Imaging in the Diffusive Regime". En Handbook of Photonics for Biomedical Engineering, 221–46. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-007-5052-4_19.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ho, Chris Jun Hui, Neal C. Burton, Stefan Morscher, U. S. Dinish, Josefine Reber, Vasilis Ntziachristos y Malini Olivo. "Advances in Optoacoustic Imaging: From Benchside to Clinic". En Frontiers in Biophotonics for Translational Medicine, 75–109. Singapore: Springer Singapore, 2015. http://dx.doi.org/10.1007/978-981-287-627-0_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Optoacoustic Imaging"

1

Oberheide, Uwe, Birte Jansen, Ingo Bruder, Holger Lubatschowski, Herbert Welling y Wolfgang Ertmer. "Optoacoustic Imaging for Ophthalmology". En European Conference on Biomedical Optics. Washington, D.C.: Optica Publishing Group, 2001. http://dx.doi.org/10.1364/ecbo.2001.4434_1.

Texto completo
Resumen
The feasibility of optoacoustic imaging was investigated for ophthalmologic application in the treatment of glaucoma. Difficulties in the treatment with laser cyclophotocoagulation are mainly due to uncertainties in the localization of the ciliary body. With laser optoacoustics it is possible to localize the position of the ciliary body on enucleated porcine and rabbit eyes. Additionally, the changes in the optical properties of the tissue induced by coagulation with a diode laser were observed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Esenaliev, Rinat O., Irene Y. Petrov, Adelaide Micci, Donald S. Prough, Yuriy Petrov, Jutatip Guptarak, Auston Grant, Margaret O. Parsley y Ian J. Bolding. "Optoacoustic theranostics". En Photons Plus Ultrasound: Imaging and Sensing 2018, editado por Alexander A. Oraevsky y Lihong V. Wang. SPIE, 2018. http://dx.doi.org/10.1117/12.2294053.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Paltauf, Günther. "Dual-wavelength optoacoustic imaging". En European Conference on Biomedical Optics. Washington, D.C.: OSA, 2003. http://dx.doi.org/10.1364/ecbo.2003.5143_41.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Oberheide, Uwe, Birte Jansen, Ingo Bruder, Holger Lubatschowski, Herbert Welling y Wolfgang Ertmer. "Optoacoustic imaging for ophthalmology". En European Conference on Biomedical Optics, editado por Albert-Claude Boccara y Alexander A. Oraevsky. SPIE, 2001. http://dx.doi.org/10.1117/12.446668.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Paltauf, Guenther. "Dual-wavelength optoacoustic imaging". En European Conference on Biomedical Optics 2003, editado por Albert-Claude Boccara. SPIE, 2003. http://dx.doi.org/10.1117/12.500444.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Jaeger, M., K. G. Held, H. G. Akarcay y M. Frenz. "Multimodal biomedical optoacoustic imaging". En CLEO: Applications and Technology. Washington, D.C.: OSA, 2016. http://dx.doi.org/10.1364/cleo_at.2016.ath3n.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Carp, Stefan A. y Vasan Venugopalan. "3D interferometric optoacoustic imaging". En Biomedical Optics 2005, editado por Alexander A. Oraevsky y Lihong V. Wang. SPIE, 2005. http://dx.doi.org/10.1117/12.591134.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Rui, Min, Sankar Narashimhan, Wolfgang Bost, Frank Stracke, Eike Weiss, Robert Lemor y Michael C. Kolios. "Gigahertz optoacoustic imaging for cellular imaging". En BiOS, editado por Alexander A. Oraevsky y Lihong V. Wang. SPIE, 2010. http://dx.doi.org/10.1117/12.841479.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Patrikeev, I., H. P. Brecht, Y. Y. Petrov, I. Y. Petrova, D. S. Prough y R. O. Esenaliev. "Optoacoustic imaging of blood vessels". En Medical Imaging, editado por Stanislav Y. Emelianov y Stephen A. McAleavey. SPIE, 2007. http://dx.doi.org/10.1117/12.711176.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Esenaliev, Rinat O. "25 years of biomedical optoacoustics: From idea to optoacoustic imaging and theranostics". En Photons Plus Ultrasound: Imaging and Sensing 2019, editado por Alexander A. Oraevsky y Lihong V. Wang. SPIE, 2019. http://dx.doi.org/10.1117/12.2511785.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Optoacoustic Imaging"

1

Modgil, Dimple. System Design, Algorithm Development, and Verification for Optoacoustic Molecular Imaging of Protease Expression in Breast Cancer. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2009. http://dx.doi.org/10.21236/ada506325.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía