Artículos de revistas sobre el tema "Optimization, Forecasting, Meta Learning, Model Selection"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Optimization, Forecasting, Meta Learning, Model Selection".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Thi Kieu Tran, Trang, Taesam Lee, Ju-Young Shin, Jong-Suk Kim y Mohamad Kamruzzaman. "Deep Learning-Based Maximum Temperature Forecasting Assisted with Meta-Learning for Hyperparameter Optimization". Atmosphere 11, n.º 5 (10 de mayo de 2020): 487. http://dx.doi.org/10.3390/atmos11050487.
Texto completoSamuel, Omaji, Fahad A. Alzahrani, Raja Jalees Ul Hussen Khan, Hassan Farooq, Muhammad Shafiq, Muhammad Khalil Afzal y Nadeem Javaid. "Towards Modified Entropy Mutual Information Feature Selection to Forecast Medium-Term Load Using a Deep Learning Model in Smart Homes". Entropy 22, n.º 1 (4 de enero de 2020): 68. http://dx.doi.org/10.3390/e22010068.
Texto completoAhmad, Waqas, Nasir Ayub, Tariq Ali, Muhammad Irfan, Muhammad Awais, Muhammad Shiraz y Adam Glowacz. "Towards Short Term Electricity Load Forecasting Using Improved Support Vector Machine and Extreme Learning Machine". Energies 13, n.º 11 (5 de junio de 2020): 2907. http://dx.doi.org/10.3390/en13112907.
Texto completoAyub, Nasir, Muhammad Irfan, Muhammad Awais, Usman Ali, Tariq Ali, Mohammed Hamdi, Abdullah Alghamdi y Fazal Muhammad. "Big Data Analytics for Short and Medium-Term Electricity Load Forecasting Using an AI Techniques Ensembler". Energies 13, n.º 19 (5 de octubre de 2020): 5193. http://dx.doi.org/10.3390/en13195193.
Texto completoLi, Yiyan, Si Zhang, Rongxing Hu y Ning Lu. "A meta-learning based distribution system load forecasting model selection framework". Applied Energy 294 (julio de 2021): 116991. http://dx.doi.org/10.1016/j.apenergy.2021.116991.
Texto completoEl-kenawy, El-Sayed M., Seyedali Mirjalili, Nima Khodadadi, Abdelaziz A. Abdelhamid, Marwa M. Eid, M. El-Said y Abdelhameed Ibrahim. "Feature selection in wind speed forecasting systems based on meta-heuristic optimization". PLOS ONE 18, n.º 2 (7 de febrero de 2023): e0278491. http://dx.doi.org/10.1371/journal.pone.0278491.
Texto completoYang, Yi, Wei Liu, Tingting Zeng, Linhan Guo, Yong Qin y Xue Wang. "An Improved Stacking Model for Equipment Spare Parts Demand Forecasting Based on Scenario Analysis". Scientific Programming 2022 (14 de junio de 2022): 1–15. http://dx.doi.org/10.1155/2022/5415702.
Texto completoCawood, Pieter y Terence Van Zyl. "Evaluating State-of-the-Art, Forecasting Ensembles and Meta-Learning Strategies for Model Fusion". Forecasting 4, n.º 3 (18 de agosto de 2022): 732–51. http://dx.doi.org/10.3390/forecast4030040.
Texto completoHafeez, Ghulam, Khurram Saleem Alimgeer, Zahid Wadud, Zeeshan Shafiq, Mohammad Usman Ali Khan, Imran Khan, Farrukh Aslam Khan y Abdelouahid Derhab. "A Novel Accurate and Fast Converging Deep Learning-Based Model for Electrical Energy Consumption Forecasting in a Smart Grid". Energies 13, n.º 9 (3 de mayo de 2020): 2244. http://dx.doi.org/10.3390/en13092244.
Texto completoDokur, Emrah, Cihan Karakuzu, Uğur Yüzgeç y Mehmet Kurban. "Using optimal choice of parameters for meta-extreme learning machine method in wind energy application". COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 40, n.º 3 (8 de febrero de 2021): 390–401. http://dx.doi.org/10.1108/compel-07-2020-0246.
Texto completoZhao, Yu Hong, Xue Cheng Zhao y Wei Cheng. "The Application of Chaotic Particle Swarm Optimization Algorithm in Power System Load Forecasting". Advanced Materials Research 614-615 (diciembre de 2012): 866–69. http://dx.doi.org/10.4028/www.scientific.net/amr.614-615.866.
Texto completoChen, Jun, Chenyang Zhao, Kaikai Liu, Jingjing Liang, Huan Wu y Shiyan Xu. "Exchange Rate Forecasting Based on Deep Learning and NSGA-II Models". Computational Intelligence and Neuroscience 2021 (22 de septiembre de 2021): 1–13. http://dx.doi.org/10.1155/2021/2993870.
Texto completoSun, Sizhou, Jingqi Fu, Feng Zhu y Dajun Du. "A hybrid structure of an extreme learning machine combined with feature selection, signal decomposition and parameter optimization for short-term wind speed forecasting". Transactions of the Institute of Measurement and Control 42, n.º 1 (23 de mayo de 2018): 3–21. http://dx.doi.org/10.1177/0142331218771141.
Texto completoQuan, Jicheng y Li Shang. "Short-Term Wind Speed Forecasting Based on Ensemble Online Sequential Extreme Learning Machine and Bayesian Optimization". Mathematical Problems in Engineering 2020 (27 de noviembre de 2020): 1–13. http://dx.doi.org/10.1155/2020/7212368.
Texto completoKim, Gi Yong, Doo Sol Han y Zoonky Lee. "Solar Panel Tilt Angle Optimization Using Machine Learning Model: A Case Study of Daegu City, South Korea". Energies 13, n.º 3 (21 de enero de 2020): 529. http://dx.doi.org/10.3390/en13030529.
Texto completoJasiński, Tomasz y Agnieszka Ścianowska. "Security assessment and optimization of energy supply (neural networks approach)". Oeconomia Copernicana 6, n.º 2 (30 de junio de 2015): 129. http://dx.doi.org/10.12775/oec.2015.016.
Texto completoGollagi, Shantappa G., Jeneetha Jebanazer J y Sridevi Sakhamuri. "Software Defects Prediction Model with Self Improved Optimization". International Journal of Software Innovation 10, n.º 1 (1 de enero de 2022): 1–21. http://dx.doi.org/10.4018/ijsi.309735.
Texto completoWu, Kaitong, Xiangang Peng, Zilu Li, Wenbo Cui, Haoliang Yuan, Chun Sing Lai y Loi Lei Lai. "A Short-Term Photovoltaic Power Forecasting Method Combining a Deep Learning Model with Trend Feature Extraction and Feature Selection". Energies 15, n.º 15 (27 de julio de 2022): 5410. http://dx.doi.org/10.3390/en15155410.
Texto completoDeepika, Nalabala y Mundukur Nirupamabhat. "An Optimized Machine Learning Model for Stock Trend Anticipation". Ingénierie des systèmes d information 25, n.º 6 (31 de diciembre de 2020): 783–92. http://dx.doi.org/10.18280/isi.250608.
Texto completoMassaoudi, Mohamed, Ines Chihi, Lilia Sidhom, Mohamed Trabelsi, Shady S. Refaat y Fakhreddine S. Oueslati. "Enhanced Random Forest Model for Robust Short-Term Photovoltaic Power Forecasting Using Weather Measurements". Energies 14, n.º 13 (2 de julio de 2021): 3992. http://dx.doi.org/10.3390/en14133992.
Texto completoLeka, Habte Lejebo, Zhang Fengli, Ayantu Tesfaye Kenea, Negalign Wake Hundera, Tewodros Gizaw Tohye y Abebe Tamrat Tegene. "PSO-Based Ensemble Meta-Learning Approach for Cloud Virtual Machine Resource Usage Prediction". Symmetry 15, n.º 3 (28 de febrero de 2023): 613. http://dx.doi.org/10.3390/sym15030613.
Texto completoMotwakel, Abdelwahed, Eatedal Alabdulkreem, Abdulbaset Gaddah, Radwa Marzouk, Nermin M. Salem, Abu Sarwar Zamani, Amgad Atta Abdelmageed y Mohamed I. Eldesouki. "Wild Horse Optimization with Deep Learning-Driven Short-Term Load Forecasting Scheme for Smart Grids". Sustainability 15, n.º 2 (12 de enero de 2023): 1524. http://dx.doi.org/10.3390/su15021524.
Texto completoKanavos, Andreas, Maria Trigka, Elias Dritsas, Gerasimos Vonitsanos y Phivos Mylonas. "A Regularization-Based Big Data Framework for Winter Precipitation Forecasting on Streaming Data". Electronics 10, n.º 16 (4 de agosto de 2021): 1872. http://dx.doi.org/10.3390/electronics10161872.
Texto completoPadhi, Dushmanta Kumar, Neelamadhab Padhy, Akash Kumar Bhoi, Jana Shafi y Seid Hassen Yesuf. "An Intelligent Fusion Model with Portfolio Selection and Machine Learning for Stock Market Prediction". Computational Intelligence and Neuroscience 2022 (23 de junio de 2022): 1–18. http://dx.doi.org/10.1155/2022/7588303.
Texto completoCalvo-Pardo, Hector F., Tullio Mancini y Jose Olmo. "Neural Network Models for Empirical Finance". Journal of Risk and Financial Management 13, n.º 11 (30 de octubre de 2020): 265. http://dx.doi.org/10.3390/jrfm13110265.
Texto completoLiu, Mingping, Xihao Sun, Qingnian Wang y Suhui Deng. "Short-Term Load Forecasting Using EMD with Feature Selection and TCN-Based Deep Learning Model". Energies 15, n.º 19 (29 de septiembre de 2022): 7170. http://dx.doi.org/10.3390/en15197170.
Texto completoMunsarif, Muhammad, Muhammad Sam’an y Safuan Safuan. "Peer to peer lending risk analysis based on embedded technique and stacking ensemble learning". Bulletin of Electrical Engineering and Informatics 11, n.º 6 (1 de diciembre de 2022): 3483–89. http://dx.doi.org/10.11591/eei.v11i6.3927.
Texto completoManliura Datilo, Philemon, Zuhaimy Ismail y Jayeola Dare. "A Review of Epidemic Forecasting Using Artificial Neural Networks". International Journal of Epidemiologic Research 6, n.º 3 (25 de septiembre de 2019): 132–43. http://dx.doi.org/10.15171/ijer.2019.24.
Texto completoWu, Yuan-Kang, Cheng-Liang Huang, Quoc-Thang Phan y Yuan-Yao Li. "Completed Review of Various Solar Power Forecasting Techniques Considering Different Viewpoints". Energies 15, n.º 9 (2 de mayo de 2022): 3320. http://dx.doi.org/10.3390/en15093320.
Texto completoHu, Zhongyi, Yukun Bao y Tao Xiong. "Comprehensive learning particle swarm optimization based memetic algorithm for model selection in short-term load forecasting using support vector regression". Applied Soft Computing 25 (diciembre de 2014): 15–25. http://dx.doi.org/10.1016/j.asoc.2014.09.007.
Texto completoYaprakdal, Fatma. "An Ensemble Deep-Learning-Based Model for Hour-Ahead Load Forecasting with a Feature Selection Approach: A Comparative Study with State-of-the-Art Methods". Energies 16, n.º 1 (21 de diciembre de 2022): 57. http://dx.doi.org/10.3390/en16010057.
Texto completoMasrom, Suraya, Rahayu Abdul Rahman, Masurah Mohamad, Abdullah Sani Abd Rahman y Norhayati Baharun. "Machine learning of tax avoidance detection based on hybrid metaheuristics algorithms". IAES International Journal of Artificial Intelligence (IJ-AI) 11, n.º 3 (1 de septiembre de 2022): 1153. http://dx.doi.org/10.11591/ijai.v11.i3.pp1153-1163.
Texto completoMahdavian, Amirsaman, Alireza Shojaei, Milad Salem, Haluk Laman, Jiann-Shiun Yuan y Amr Oloufa. "Automated Machine Learning Pipeline for Traffic Count Prediction". Modelling 2, n.º 4 (12 de octubre de 2021): 482–513. http://dx.doi.org/10.3390/modelling2040026.
Texto completoNguyen, P., M. Hilario y A. Kalousis. "Using Meta-mining to Support Data Mining Workflow Planning and Optimization". Journal of Artificial Intelligence Research 51 (29 de noviembre de 2014): 605–44. http://dx.doi.org/10.1613/jair.4377.
Texto completoBouktif, Salah, Ali Fiaz, Ali Ouni y Mohamed Adel Serhani. "Multi-Sequence LSTM-RNN Deep Learning and Metaheuristics for Electric Load Forecasting". Energies 13, n.º 2 (13 de enero de 2020): 391. http://dx.doi.org/10.3390/en13020391.
Texto completoYan, Guangxi, Yu Bai, Chengqing Yu y Chengming Yu. "A Multi-Factor Driven Model for Locomotive Axle Temperature Prediction Based on Multi-Stage Feature Engineering and Deep Learning Framework". Machines 10, n.º 9 (1 de septiembre de 2022): 759. http://dx.doi.org/10.3390/machines10090759.
Texto completoLu, Feng Yi, Shuang Wang, Ge Ning Xu y Qi Song Qi. "Research on Parameter Optimization Method of v-SVRM Forecasting Model for Crane Load Spectrum". Advanced Materials Research 1078 (diciembre de 2014): 191–96. http://dx.doi.org/10.4028/www.scientific.net/amr.1078.191.
Texto completoAi, Ping, Yanhong Song, Chuansheng Xiong, Binbin Chen y Zhaoxin Yue. "A novel medium- and long-term runoff combined forecasting model based on different lag periods". Journal of Hydroinformatics 24, n.º 2 (21 de febrero de 2022): 367–87. http://dx.doi.org/10.2166/hydro.2022.116.
Texto completoTuerxun, Wumaier, Chang Xu, Hongyu Guo, Lei Guo, Namei Zeng y Yansong Gao. "A Wind Power Forecasting Model Using LSTM Optimized by the Modified Bald Eagle Search Algorithm". Energies 15, n.º 6 (10 de marzo de 2022): 2031. http://dx.doi.org/10.3390/en15062031.
Texto completoMogbojuri, A. O. y O. A. Olanrewaju. "Goal programming and genetic algorithm in multiple objective optimization model for project portfolio selection: a review". Nigerian Journal of Technology 41, n.º 5 (9 de noviembre de 2022): 862–69. http://dx.doi.org/10.4314/njt.v41i5.6.
Texto completoAlmulihi, Ahmed, Hager Saleh, Ali Mohamed Hussien, Sherif Mostafa, Shaker El-Sappagh, Khaled Alnowaiser, Abdelmgeid A. Ali y Moatamad Refaat Hassan. "Ensemble Learning Based on Hybrid Deep Learning Model for Heart Disease Early Prediction". Diagnostics 12, n.º 12 (18 de diciembre de 2022): 3215. http://dx.doi.org/10.3390/diagnostics12123215.
Texto completoRath, Smita, Binod Kumar Sahu y Manoj Ranjan Nayak. "Application of quasi-oppositional symbiotic organisms search based extreme learning machine for stock market prediction". International Journal of Intelligent Computing and Cybernetics 12, n.º 2 (10 de junio de 2019): 175–93. http://dx.doi.org/10.1108/ijicc-10-2018-0145.
Texto completoAng, Yik Kang, Amin Talei, Izni Zahidi y Ali Rashidi. "Past, Present, and Future of Using Neuro-Fuzzy Systems for Hydrological Modeling and Forecasting". Hydrology 10, n.º 2 (26 de enero de 2023): 36. http://dx.doi.org/10.3390/hydrology10020036.
Texto completoKumar, Akash, Bing Yan y Ace Bilton. "Machine Learning-Based Load Forecasting for Nanogrid Peak Load Cost Reduction". Energies 15, n.º 18 (14 de septiembre de 2022): 6721. http://dx.doi.org/10.3390/en15186721.
Texto completoZirngibl, Christoph, Fabian Dworschak, Benjamin Schleich y Sandro Wartzack. "Application of reinforcement learning for the optimization of clinch joint characteristics". Production Engineering 16, n.º 2-3 (22 de diciembre de 2021): 315–25. http://dx.doi.org/10.1007/s11740-021-01098-4.
Texto completoIzidio, Diogo M. F., Paulo S. G. de Mattos Neto, Luciano Barbosa, João F. L. de Oliveira, Manoel Henrique da Nóbrega Marinho y Guilherme Ferretti Rissi. "Evolutionary Hybrid System for Energy Consumption Forecasting for Smart Meters". Energies 14, n.º 7 (24 de marzo de 2021): 1794. http://dx.doi.org/10.3390/en14071794.
Texto completoZamee, Muhammad Ahsan y Dongjun Won. "Novel Mode Adaptive Artificial Neural Network for Dynamic Learning: Application in Renewable Energy Sources Power Generation Prediction". Energies 13, n.º 23 (3 de diciembre de 2020): 6405. http://dx.doi.org/10.3390/en13236405.
Texto completoAghelpour, Pouya, Babak Mohammadi, Seyed Mostafa Biazar, Ozgur Kisi y Zohreh Sourmirinezhad. "A Theoretical Approach for Forecasting Different Types of Drought Simultaneously, Using Entropy Theory and Machine-Learning Methods". ISPRS International Journal of Geo-Information 9, n.º 12 (25 de noviembre de 2020): 701. http://dx.doi.org/10.3390/ijgi9120701.
Texto completoKumar, Akshi, Arunima Jaiswal, Shikhar Garg, Shobhit Verma y Siddhant Kumar. "Sentiment Analysis Using Cuckoo Search for Optimized Feature Selection on Kaggle Tweets". International Journal of Information Retrieval Research 9, n.º 1 (enero de 2019): 1–15. http://dx.doi.org/10.4018/ijirr.2019010101.
Texto completoBakurova, Anna, Olesia Yuskiv, Dima Shyrokorad, Anton Riabenko y Elina Tereschenko. "NEURAL NETWORK FORECASTING OF ENERGY CONSUMPTION OF A METALLURGICAL ENTERPRISE". Innovative Technologies and Scientific Solutions for Industries, n.º 1 (15) (31 de marzo de 2021): 14–22. http://dx.doi.org/10.30837/itssi.2021.15.014.
Texto completo