Literatura académica sobre el tema "Optimisatiion géométrique"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Optimisatiion géométrique".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Optimisatiion géométrique"
Abbas, Mohamed, Noureddine Said y Boussad Boumeddane. "Optimisation d’un moteur Stirling de type gamma". Journal of Renewable Energies 13, n.º 1 (25 de octubre de 2023): 1–12. http://dx.doi.org/10.54966/jreen.v13i1.174.
Texto completoBellel, Nadir y Abla Chaker. "Etude et Optimisation du Réseau de Circulation du Fluide Caloporteur d’un Convertisseur Thermique". Journal of Renewable Energies 7, n.º 2 (31 de diciembre de 2004): 85–94. http://dx.doi.org/10.54966/jreen.v7i2.869.
Texto completoBarkatou, M. y A. Henrot. "Un résultat d'existence en optimisation de forme en utilisant une propriété géométrique de la normale". ESAIM: Control, Optimisation and Calculus of Variations 2 (1997): 105–23. http://dx.doi.org/10.1051/cocv:1997105.
Texto completoCheknane, Ali, Boumediene Benyoucef, Jean-Pierre Charles y Radia Zerdoum. "Optimisation et Conception d'une Grille Collectrice Appliquée aux Photopiles Fonctionnant sous Haute Concentration Solaire". Journal of Renewable Energies 7, n.º 2 (31 de diciembre de 2004): 95–108. http://dx.doi.org/10.54966/jreen.v7i2.870.
Texto completoBelhamel, Maiouf. "Optimisation de la Performance d’un Collecteur Solaire Cylindro – parabolique à Caloduc : Réalisation et Dimensionnement du Caloduc". Journal of Renewable Energies 2, n.º 1 (30 de junio de 1999): 39–49. http://dx.doi.org/10.54966/jreen.v2i1.923.
Texto completoSehaqui, Rachid, Meryem Sijelmassi y Jaâfar Khalid Naciri. "Amélioration du transfert thermique par optimisation de la géométrie d'une conduite de révolution". Mécanique & Industries 6, n.º 2 (marzo de 2005): 189–93. http://dx.doi.org/10.1051/meca:2005019.
Texto completoDroin, Laurent, Maurice Amram y Vick J. Chvojka. "Optimisation Géométrique de Guides d'Ondes Utilisés comme Filtres Passe-bas pour le Controle des Bruits de Basses Fréquences". Applied Acoustics 19, n.º 4 (1986): 285–303. http://dx.doi.org/10.1016/0003-682x(86)90003-4.
Texto completoBouziani, Mourad y Jacynthe Pouliot. "Optimisation de la mise à jour des bases de données géospatiales Proposition d'une procédure automatisée d'appariement géométrique d'objets linéaires". Revue internationale de géomatique 18, n.º 1 (26 de marzo de 2008): 113–37. http://dx.doi.org/10.3166/geo.18.113-137.
Texto completoVanbremeersch, Jacques, Pascale Godts, Eugène Constant y Isabelle Valin. "Optimisation théorique et expérimentale des caractéristiques géométriques et électriques du transistor à effet de champ à grille submicronique". Annales des Télécommunications 45, n.º 5-6 (mayo de 1990): 321–28. http://dx.doi.org/10.1007/bf02995133.
Texto completoBeuf, Aurélien, Florence Raynal, Jean-Noël Gence y Philippe Carrière. "Optimisation du protocole de mélange et de la géométrie d’une chambre d’hybridation de puces à ADN". La Houille Blanche, n.º 6 (diciembre de 2007): 39–44. http://dx.doi.org/10.1051/lhb:2007080.
Texto completoTesis sobre el tema "Optimisatiion géométrique"
Tassouli, Siham. "Neurodynamic chance-constrained geometric optimization". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG062.
Texto completoIn many real-world scenarios, decision-makers face uncertainties that can affect the outcomes of their decisions. These uncertainties arise from various sources, such as variability in demand, fluctuating market conditions, or incomplete information about system parameters. Traditional deterministic optimization approaches assume that all parameters are known with certainty, which may not accurately reflect the reality of the problem. Chance-constrained optimization provides a more realistic and robust approach by explicitly accounting for the uncertainty in decision-making. Geometric programming is often misunderstood as a technique exclusively designed for posynomial problems. However, it is a versatile mathematical theory with significant value in addressing a broad range of separable problems. In fact, its true strength lies in its ability to effectively tackle seemingly inseparable problems by leveraging their linear algebraic structure. This general applicability of geometric programming makes it a valuable tool for studying and solving various optimization problems, extending its practical usefulness beyond its initial perception. Recurrent neural networks (RNNs) offer a biologically inspired computational framework with great optimization potential. By emulating the interconnected structure of neurons in the brain, RNNs excel in modeling complex and dynamic systems. This capability allows them to capture temporal dependencies and feedback loops, making them well-suited for optimization scenarios that involve sequential decision-making or iterative processes. Moreover, one of the key advantages of neurodynamic approaches is their hardware implementation feasibility. The primary objective of this thesis is to develop neurodynamic algorithms that are efficient and effective in solving chance-constrained geometric optimization problems. The thesis begins by focusing on chance-constrained geometric programs involving independent random variables. In addition, a specific type of geometric programs known as rectangular programs is also examined in detail. The objective is to understand the characteristics and complexities associated with this subclass of geometric programs. Subsequently, the thesis explores applying copula theory to address chance-constrained geometric programs with dependent random variables. Copula theory provides a mathematical framework for modeling and analyzing the dependence structure between random variables, thereby enhancing the understanding and optimization of these problems. Lastly, the thesis investigates distributionally robust geometric optimization, which considers uncertain distributions of random variables. This approach focuses on developing optimization algorithms that are robust against uncertainty in the underlying probability distributions, ensuring more reliable and stable solutions
Rakotoarisoa, Hery. "Modélisation géométrique et optimisation de structures géologiques 3D". Lyon 1, 1992. http://www.theses.fr/1992LYO19004.
Texto completoBobenrieth, Cédric. "Modélisation géométrique par croquis". Thesis, Strasbourg, 2019. https://publication-theses.unistra.fr/public/theses_doctorat/2019/Bobenrieth_Cedric_2019_ED269.pdf.
Texto completoNowadays, 3D modeling is omnipresent, however modern tools for creating 3D models are complex and time consuming. Conversely, the sketch is a natural way to quickly communicate ideas, so a method allowing the automatic reconstruction of 3D objects from a sketch would simplify this process. This method should solve two problems: the computation of the hidden parts of the drawn shape and the determination of the 3D coordinates from the 2D data of the sketch. In this thesis, we present two new approaches that aim to overcome these problems. The first makes use of a priori and a pre-existing database to allow automatic 3D reconstruction of flowers from a single sketch from any angle of view. The second allows the reconstruction of all types of objects, without limitations, using a more informative drawing style and being guided by the user
Menguy, Yann. "Optimisation quadratique et géométrique de problèmes de dosimétrie inverse". Phd thesis, Université Joseph Fourier (Grenoble), 1996. http://tel.archives-ouvertes.fr/tel-00005003.
Texto completoSergent, Philippe. "Optimisation géométrique du contrôle actif dans les gaines de ventilation". Phd thesis, Ecole Nationale des Ponts et Chaussées, 1996. http://tel.archives-ouvertes.fr/tel-00529385.
Texto completoLedoux, Yann. "Optimisation des procédés d'emboutissage par caractérisation géométrique et essais numériques". Phd thesis, Chambéry, 2005. http://tel.archives-ouvertes.fr/tel-00419320.
Texto completoSERGENT, PHILIPPE. "Optimisation géométrique du contrôle actif dans les gaines de ventilation". Marne-la-vallée, ENPC, 1996. http://www.theses.fr/1996ENPC9607.
Texto completoDelgado, Gabriel. "Optimisation des structures composites: Une analyse de sensibilité géométrique et topologique". Phd thesis, Ecole Polytechnique X, 2014. http://pastel.archives-ouvertes.fr/pastel-01005520.
Texto completoChaigne, Benoît. "Méthodes hiérarchiques pour l'optimisation géométrique de structures rayonnantes". Phd thesis, Université de Nice Sophia-Antipolis, 2009. http://tel.archives-ouvertes.fr/tel-00429366.
Texto completoShindo, Kyo. "Analyse mécanique et optimisation géométrique de la dent restaurée par méthode indirecte". Thesis, Université Paris-Saclay (ComUE), 2019. http://www.theses.fr/2019SACLC003/document.
Texto completoThe rehabilitation of dental function following the fitting of prostheses obtained by cemented ceramic restorations is one of the major challenges of restorative dentistry. It is now well established that the ceramic/composite interface has an important significance for the longevity of the restoration and its observation using X-ray µ-CT enabled us to characterize some types of defects within the cement layer (air voids and debonding). The mechanical analysis of the restored tooth considering those defects exhibits their negative influence on the strength of the assembly. The influence of design parameters has also been studied considering a simplified 2D axisymmetric FE model in order to avoid the morphological diversity of real geometries. Results show that the design of the inner shape of the crown (editable within the CAD/CAM process) is mechanically relevant. A 3D finite element study extending to the periodontal ligament has then been realized in order to approach this problem in a more realistic perspective. Results show high stresses near from the cervical margin of the crown, coinciding with a common clinical failure mode. This 3D model was also used in a additional study allowing us to conclude that the geometrical data used in modern CAD/CAM processes are sufficient to develop a mechanical optimization of the restoration design. A reverse engineering method based on the interpolation of B-Spline surfaces on scanned data acquired during clinic procedures is therefore introduced in order to integrate a patient specific mechanical optimization within the digital chain of CAD/CAM processes
Libros sobre el tema "Optimisatiion géométrique"
Michel, Pierre, ed. Variation et optimisation de formes: Une analyse géométrique. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005.
Buscar texto completoGrötschel, Martin. Geometric algorithms and combinatorial optimization. 2a ed. Berlin: Springer-Verlag, 1993.
Buscar texto completoGrötschel, Martin. Geometric algorithms and combinatorial optimization. Berlin: Springer-Verlag, 1988.
Buscar texto completoOptimal transport: Old and new. Berlin: Springer, 2009.
Buscar texto completoHildebrandt, Stefan. Mathematics and optimal form. New York: Scientific American Library, 1985.
Buscar texto completoPierre, Michel y Antoine Henrot. Variation et optimisation de formes: Une analyse géométrique (Mathématiques et Applications). Springer, 2007.
Buscar texto completoAgrachev, Andrei A. y Yuri Sachkov. Control Theory from the Geometric Viewpoint. Springer, 2013.
Buscar texto completoGamkrelidze, R. V., Andrei A. Agrachev y Yuri Sachkov. Control Theory from the Geometric Viewpoint. Springer, 2010.
Buscar texto completoControl Theory from the Geometric Viewpoint. Springer, 2004.
Buscar texto completoAtkins, P. W. Second Law: Energy, Chaos, and Form. W.H. Freeman & Company, 1994.
Buscar texto completoCapítulos de libros sobre el tema "Optimisatiion géométrique"
"Propriétés géométriques de l’optimum". En Variation et optimisation de formes, 233–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-37689-5_6.
Texto completo