Siga este enlace para ver otros tipos de publicaciones sobre el tema: Optimal control methods.

Artículos de revistas sobre el tema "Optimal control methods"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Optimal control methods".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Gammell, Jonathan D. y Marlin P. Strub. "Asymptotically Optimal Sampling-Based Motion Planning Methods". Annual Review of Control, Robotics, and Autonomous Systems 4, n.º 1 (3 de mayo de 2021): 295–318. http://dx.doi.org/10.1146/annurev-control-061920-093753.

Texto completo
Resumen
Motion planning is a fundamental problem in autonomous robotics that requires finding a path to a specified goal that avoids obstacles and takes into account a robot's limitations and constraints. It is often desirable for this path to also optimize a cost function, such as path length. Formal path-quality guarantees for continuously valued search spaces are an active area of research interest. Recent results have proven that some sampling-based planning methods probabilistically converge toward the optimal solution as computational effort approaches infinity. This article summarizes the assumptions behind these popular asymptotically optimal techniques and provides an introduction to the significant ongoing research on this topic.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Tsirlin, A. M. "Methods of Simplifying Optimal Control Problems, Heat Exchange and Parametric Control of Oscillators". Nelineinaya Dinamika 18, n.º 4 (2022): 0. http://dx.doi.org/10.20537/nd220801.

Texto completo
Resumen
Methods of simplifying optimal control problems by decreasing the dimension of the space of states are considered. For this purpose, transition to new phase coordinates or conversion of the phase coordinates to the class of controls is used. The problems of heat exchange and parametric control of oscillators are given as examples: braking/swinging of a pendulum by changing the length of suspension and variation of the energy of molecules’ oscillations in the crystal lattice by changing the state of the medium (exposure to laser radiation). The last problem corresponds to changes in the temperature of the crystal.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Vinter, R. B. "PERTURBATION METHODS IN OPTIMAL CONTROL". Bulletin of the London Mathematical Society 23, n.º 6 (noviembre de 1991): 616–17. http://dx.doi.org/10.1112/blms/23.6.616.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kučera, Vladimír. "Optimal control: Linear quadratic methods". Automatica 28, n.º 5 (septiembre de 1992): 1068–69. http://dx.doi.org/10.1016/0005-1098(92)90166-d.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Lang, J. y J. G. Verwer. "W-methods in optimal control". Numerische Mathematik 124, n.º 2 (19 de febrero de 2013): 337–60. http://dx.doi.org/10.1007/s00211-013-0516-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Chalabi, Z. y W. Zhou. "OPTIMAL CONTROL METHODS FOR AGRICULTURAL SYSTEMS". Acta Horticulturae, n.º 406 (abril de 1996): 221–28. http://dx.doi.org/10.17660/actahortic.1996.406.22.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Hou, T. "Mixed Methods for Optimal Control Problems". Numerical Analysis and Applications 11, n.º 3 (julio de 2018): 268–77. http://dx.doi.org/10.1134/s1995423918030072.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Chen, Hong, Lulu Guo, Ting Qu, Bingzhao Gao y Fei Wang. "Optimal control methods in intelligent vehicles". Journal of Control and Decision 4, n.º 1 (18 de noviembre de 2016): 32–56. http://dx.doi.org/10.1080/23307706.2016.1254072.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Bochev, Pavel. "Least-squares methods for optimal control". Nonlinear Analysis: Theory, Methods & Applications 30, n.º 3 (diciembre de 1997): 1875–85. http://dx.doi.org/10.1016/s0362-546x(97)00152-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Sachs, Ekkehard W. "Quasi Newton Methods in Optimal Control". IFAC Proceedings Volumes 18, n.º 2 (junio de 1985): 240. http://dx.doi.org/10.1016/s1474-6670(17)69239-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Fraser-Andrews, G. "Numerical methods for singular optimal control". Journal of Optimization Theory and Applications 61, n.º 3 (junio de 1989): 377–401. http://dx.doi.org/10.1007/bf00941825.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Buldaev, A. S. "Perturbation methods in optimal control problems". Ecological Modelling 216, n.º 2 (agosto de 2008): 157–59. http://dx.doi.org/10.1016/j.ecolmodel.2008.03.030.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Hager, William W. "Multiplier Methods for Nonlinear Optimal Control". SIAM Journal on Numerical Analysis 27, n.º 4 (agosto de 1990): 1061–80. http://dx.doi.org/10.1137/0727063.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Papageorgiou, Nikolaos S., Vicenţiu D. Rădulescu y Dušan D. Repovš. "Relaxation methods for optimal control problems". Bulletin of Mathematical Sciences 10, n.º 01 (25 de febrero de 2020): 2050004. http://dx.doi.org/10.1142/s1664360720500046.

Texto completo
Resumen
We consider a nonlinear optimal control problem with dynamics described by a differential inclusion involving a maximal monotone map [Formula: see text]. We do not assume that [Formula: see text], incorporating in this way systems with unilateral constraints in our framework. We present two relaxation methods. The first one is an outgrowth of the reduction method from the existence theory, while the second method uses Young measures. We show that the two relaxation methods are equivalent and admissible.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Baranov, V. V. y V. I. Salyga. "Methods of uniform optimal stochastic control". Computational Mathematics and Modeling 5, n.º 1 (1994): 98–105. http://dx.doi.org/10.1007/bf01128583.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Marburger, Jan. "On Optimal Control Using Particle Methods". PAMM 9, n.º 1 (diciembre de 2009): 605–6. http://dx.doi.org/10.1002/pamm.200910274.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Belta, Calin y Sadra Sadraddini. "Formal Methods for Control Synthesis: An Optimization Perspective". Annual Review of Control, Robotics, and Autonomous Systems 2, n.º 1 (3 de mayo de 2019): 115–40. http://dx.doi.org/10.1146/annurev-control-053018-023717.

Texto completo
Resumen
In control theory, complicated dynamics such as systems of (nonlinear) differential equations are controlled mostly to achieve stability. This fundamental property, which can be with respect to a desired operating point or a prescribed trajectory, is often linked with optimality, which requires minimizing a certain cost along the trajectories of a stable system. In formal verification (model checking), simple systems, such as finite-state transition graphs that model computer programs or digital circuits, are checked against rich specifications given as formulas of temporal logics. The formal synthesis problem, in which the goal is to synthesize or control a finite system from a temporal logic specification, has recently received increased interest. In this article, we review some recent results on the connection between optimal control and formal synthesis. Specifically, we focus on the following problem: Given a cost and a correctness temporal logic specification for a dynamical system, generate an optimal control strategy that satisfies the specification. We first provide a short overview of automata-based methods, in which the dynamics of the system are mapped to a finite abstraction that is then controlled using an automaton corresponding to the specification. We then provide a detailed overview of a class of methods that rely on mapping the specification and the dynamics to constraints of an optimization problem. We discuss advantages and limitations of these two types of approaches and suggest directions for future research.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Ostapenko, Valentin V., A. P. Yakovleva, I. S. Voznyuk y V. M. Rogov. "Optimal Control Methods for an Electrochemical Sewage". Journal of Automation and Information Sciences 28, n.º 1-2 (1996): 85–92. http://dx.doi.org/10.1615/jautomatinfscien.v28.i1-2.90.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Roberts, Adrian. "Polynomial Methods in Optimal Control and Filtering". Computing & Control Engineering Journal 4, n.º 3 (1993): 116. http://dx.doi.org/10.1049/cce:19930025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Kaczorek, Tadeusz. "Polynomial methods in optimal control and filtering". Control Engineering Practice 3, n.º 10 (octubre de 1995): 1508–9. http://dx.doi.org/10.1016/0967-0661(95)90046-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Fleming, W. H. "Perturbation Methods in Optimal Control (Alain Bensoussan)". SIAM Review 31, n.º 4 (diciembre de 1989): 693–94. http://dx.doi.org/10.1137/1031148.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Carpentier, Pierre, Guy Cohen y Anes Dallagi. "Particle methods for stochastic optimal control problems". Computational Optimization and Applications 56, n.º 3 (1 de agosto de 2013): 635–74. http://dx.doi.org/10.1007/s10589-013-9579-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Palazzolo, A. B., R. R. Lin, A. F. Kascak y R. M. Alexander. "Active Control of Transient Rotordynamic Vibration by Optimal Control Methods". Journal of Engineering for Gas Turbines and Power 111, n.º 2 (1 de abril de 1989): 264–70. http://dx.doi.org/10.1115/1.3240246.

Texto completo
Resumen
Although considerable effort has been put into the study of steady-state vibration control, there are few methods applicable to transient vibration control of rotor-bearing systems. In this paper optimal control theory has been adopted to minimize rotor vibration due to sudden imbalance, e.g., blade loss. The system gain matrix is obtained by choosing the weighting matrices and solving the Riccati equation. Control forces are applied to the system via a feedback loop. A seven mass rotor system is simulated for illustration. A relationshp between the number of sensors and the number of modes used in the optimal control model is investigated. Comparisons of responses are made for various configurations of modes, sensors, and actuators. Furthermore, spillover effect is examined by comparing results from collocated and noncollocated sensor configurations. Results show that shaft vibration is significantly attenuated in the closed-loop system.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Dellnitz, Michael, Julian Eckstein, Kathrin Flaßkamp, Patrick Friedel, Christian Horenkamp, Ulrich Köhler, Sina Ober-Blöbaum, Sebastian Peitz y Sebastian Tiemeyer. "Development of an Intelligent Cruise Control Using Optimal Control Methods". Procedia Technology 15 (2014): 285–94. http://dx.doi.org/10.1016/j.protcy.2014.09.082.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Gurman, Vladimir, Irina Rasina, Irina Guseva y Oles Fesko. "Methods for approximate solution of optimal control problems". Program Systems: Theory and Applications 6, n.º 4 (2015): 113–37. http://dx.doi.org/10.25209/2079-3316-2015-6-4-113-137.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Skibitskiy, N. V. "Interval methods in the problems of optimal control". Industrial laboratory. Diagnostics of materials 88, n.º 5 (23 de mayo de 2022): 71–82. http://dx.doi.org/10.26896/1028-6861-2022-88-5-71-82.

Texto completo
Resumen
The problem of optimal control of a linear dynamic object in conditions of incomplete information about the initial data is considered. The approaches based on various models of the uncertainty description are analyzed. It is shown that the use of the approach based on a probabilistic model for describing uncertainty is advisable when the uncertainty is associated only with randomness, the description of other sources of uncertainty within this model is rather difficult and the formal application of the regression analysis provides the results that are far from true. Though the fuzzy model is suitable for describing a wide range of the uncertainty sources, application of the model faces methodological difficulties when comparing and ranking fuzzy numbers and smoothing fuzzy data. In this regard, it seems promising to use an approach based on an interval model which allows description of a wide class of uncertain and inaccurate initial data. To unify control algorithms for the systems described by equations of state of different types with interval-given parameters, we developed an algorithm of equivalent transformations that provides the transition to special forms of representing the state matrix while maintaining preservation of all the dynamic properties of the original system. The problems of constructing the range of values of the roots of the matrix of the system and its description by an approximation in the form of an interval vector are solved to ensure the implementation of the algorithm. An approach is proposed to solve the problems of terminal control and maximum performance, when the uncertainty of the initial data is described by the interval model and the apparatus of interval analysis is used to solve the problem. It is shown that in this case with the direct use of the classical formulation of the optimal control problem without taking the uncertainty into account, there is no single optimal control which guarantees the exact transfer of the object to the required final state for any value of the parameters from a given range of their possible values. Therefore, in the presence of the interval uncertainty of the initial data, the solution of the problem can’t be obtained in the sense in which it is understood with precisely known parameters and the approach to the formulation of the control problem itself should be revised in order to determine in the future a solution that ensures guaranteed accuracy of the system translation. In this regard, we propose to formulate the control problem in conditions of the interval uncertainty as a problem of determining the set of control actions that guarantee the solution with the accuracy set up to the interval, on the set of initial data known up to the interval. Using an example of the problem with an inaccurately known initial state, it is shown that if the set of possible initial states of an object belongs to a n-dimensional rectangular parallelepiped, then when implementing a control on an object calculated for any initial state from a given set, the set of final states is convex and represents a n-dimensional parallelepiped. To construct the parallelepiped, it is sufficient to determine the coordinates of the vertices corresponding to the vertices of the abovementioned n-dimensional rectangular parallelepiped. We propose a system of inequalities which determines the condition for the membership of a set of finite states of the object obtained upon implementation of control for any possible value of the initial state from a given set to the required set of finite states. On the basis of this system of inequalities, conditions are formulated that provide a priori determination of the solvability of the problem.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Gong, Qi, Fariba Fahroo y I. Michael Ross. "Spectral Algorithm for Pseudospectral Methods in Optimal Control". Journal of Guidance, Control, and Dynamics 31, n.º 3 (mayo de 2008): 460–71. http://dx.doi.org/10.2514/1.32908.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Goncharova, E. V. y M. V. Staritsyn. "Gradient refinement methods for optimal impulse control problems". Automation and Remote Control 72, n.º 10 (octubre de 2011): 2188–95. http://dx.doi.org/10.1134/s0005117911100171.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Hou, T. "Erratum to: Mixed Methods for Optimal Control Problems". Numerical Analysis and Applications 11, n.º 4 (octubre de 2018): 372. http://dx.doi.org/10.1134/s1995423918040092.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Kelley, C. T. y E. W. Sachs. "Quasi-Newton Methods and Unconstrained Optimal Control Problems". SIAM Journal on Control and Optimization 25, n.º 6 (noviembre de 1987): 1503–16. http://dx.doi.org/10.1137/0325083.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Baturin, V. A. y S. V. Cheremnykh. "Second Order Methods for the Optimal Control Problems". Automation and Remote Control 79, n.º 5 (mayo de 2018): 919–39. http://dx.doi.org/10.1134/s0005117918050120.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Betts,, JT y I. Kolmanovsky,. "Practical Methods for Optimal Control using Nonlinear Programming". Applied Mechanics Reviews 55, n.º 4 (1 de julio de 2002): B68. http://dx.doi.org/10.1115/1.1483351.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Borzı̀, Alfio. "Multigrid methods for parabolic distributed optimal control problems". Journal of Computational and Applied Mathematics 157, n.º 2 (agosto de 2003): 365–82. http://dx.doi.org/10.1016/s0377-0427(03)00417-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Gornov, A. Yu, A. I. Tyatyushkin y E. A. Finkelstein. "Numerical methods for solving applied optimal control problems". Computational Mathematics and Mathematical Physics 53, n.º 12 (diciembre de 2013): 1825–38. http://dx.doi.org/10.1134/s0965542513120063.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Gornov, A. Yu, A. I. Tyatyushkin y E. A. Finkelstein. "Numerical methods for solving terminal optimal control problems". Computational Mathematics and Mathematical Physics 56, n.º 2 (febrero de 2016): 221–34. http://dx.doi.org/10.1134/s0965542516020093.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

I. Seginer y R. W. McClendon. "Methods for Optimal Control of the Greenhouse Environment". Transactions of the ASAE 35, n.º 4 (1992): 1299–307. http://dx.doi.org/10.13031/2013.28733.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Vikhansky, A. "Enhancement of laminar mixing by optimal control methods". Chemical Engineering Science 57, n.º 14 (julio de 2002): 2719–25. http://dx.doi.org/10.1016/s0009-2509(02)00122-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Basting, Christopher y Dmitri Kuzmin. "Optimal control for mass conservative level set methods". Journal of Computational and Applied Mathematics 270 (noviembre de 2014): 343–52. http://dx.doi.org/10.1016/j.cam.2013.12.040.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Tang, Xiaojun, Zhenbao Liu y Yu Hu. "New results on pseudospectral methods for optimal control". Automatica 65 (marzo de 2016): 160–63. http://dx.doi.org/10.1016/j.automatica.2015.11.035.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Kucera, Vladimir. "Control system design: Conventional, algebraic and optimal methods". Automatica 25, n.º 2 (marzo de 1989): 322–23. http://dx.doi.org/10.1016/0005-1098(89)90090-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Vakhrameev, S. A. "Geometrical and topological methods in optimal control theory". Journal of Mathematical Sciences 76, n.º 5 (octubre de 1995): 2555–719. http://dx.doi.org/10.1007/bf02362893.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Zeid, Samaneh Soradi, Sohrab Effati y Ali Vahidian Kamyad. "Approximation methods for solving fractional optimal control problems". Computational and Applied Mathematics 37, S1 (27 de febrero de 2017): 158–82. http://dx.doi.org/10.1007/s40314-017-0424-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

El Baqqaly, El-Houcine y Mondher Damak. "Numerical Methods for Fractional Optimal Control and Estimation". Babylonian Journal of Mathematics 2023 (26 de mayo de 2023): 23–29. http://dx.doi.org/10.58496/bjm/2023/005.

Texto completo
Resumen
Fractional calculus has become a valuable mathematical tool for modeling various physical phenomena exhibiting anomalous dynamics such as memory and hereditary properties. However, the fractional operators lead to difficulties in analysis, optimization, and estimation that limit the application of fractional models. This paper develops numerical methods to solve fractional optimal control and estimation problems with Caputo derivatives of arbitrary order. First, fractional Pontryagin's maximum principle is used to formulate first-order necessary conditions for fractional optimal control problems. A fractional collocation method using polynomial basis functions is then proposed to discretize the resulting boundary value problems. This allows transforming an infinite-dimensional optimal control problem into a finite nonlinear programming problem. Second, for fractional estimation, a novel ensemble Kalman filter is proposed based on a Monte Carlo approach to propagate the fractional state dynamics. This provides a recursive fractional state estimator analogous to the classical Kalman filter. The capabilities of the proposed collocation and ensemble Kalman filter methods are demonstrated through applications including fractional epidemic control, thermomechanical oscillator control, and state estimation of viscoelastic mechanical systems. The results illustrate improved accuracy over prior discretization schemes along with the ability to handle complex system dynamics. This work provides a comprehensive framework for numerical solution of fractional optimal control and estimation problems. The methods enable applying fractional calculus to address challenges in robotics, biomedicine, mechanics, and other fields where systems exhibit non-classical dynamics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Carraro, Thomas y Michael Geiger. "Multiple shooting methods for parabolic optimal control problems with control constraints". PAMM 15, n.º 1 (octubre de 2015): 609–10. http://dx.doi.org/10.1002/pamm.201510294.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Lanzon, Alexander y Hong Wang. "Special Issue onDirections, Applications and Methods in Robust Control Optimal Control, Applications and Methods (OCAM)". Optimal Control Applications and Methods 28, n.º 4 (2007): n/a. http://dx.doi.org/10.1002/oca.816.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Kumar, Renjith R. y Hans Seywald. "Should controls be eliminated while solving optimal control problems via direct methods?" Journal of Guidance, Control, and Dynamics 19, n.º 2 (marzo de 1996): 418–23. http://dx.doi.org/10.2514/3.21634.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Nekrasov, Sergej A. y Vladimir S. Volkov. "Numerical methods for solving optimal control for Stefan problems". Vestnik of Saint Petersburg University. Applied Mathematics. Computer Science. Control Processes, n.º 2 (2016): 87–100. http://dx.doi.org/10.21638/11701/spbu10.2016.209.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Fonner, Robert y Alok K. Bohara. "Optimal Control of Wild Horse Populations with Nonlethal Methods". Land Economics 93, n.º 3 (24 de julio de 2017): 390–412. http://dx.doi.org/10.3368/le.93.3.390.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Axelsson, Owe, Michal Béreš y Radim Blaheta. "Computational methods for boundary optimal control and identification problems". Mathematics and Computers in Simulation 189 (noviembre de 2021): 276–90. http://dx.doi.org/10.1016/j.matcom.2021.02.019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Fahroo, Fariba y I. Michael Ross. "Pseudospectral Methods for Infinite-Horizon Nonlinear Optimal Control Problems". Journal of Guidance, Control, and Dynamics 31, n.º 4 (julio de 2008): 927–36. http://dx.doi.org/10.2514/1.33117.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía