Literatura académica sobre el tema "Optical tomography"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Optical tomography".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Optical tomography"
Kalnaya, O. A. y Yu S. Kurskoy. "Femtosecond Optical Tomography". Metrology and instruments, n.º 2 (21 de mayo de 2020): 57–60. http://dx.doi.org/10.33955/2307-2180(2)2020.57-60.
Texto completoPattan, Anusha U. y Shubhangi D.C. "Optical Tomography: The Survey on Optical Tomographic Techniques". International Journal of Advanced Research in Computer Science and Software Engineering 7, n.º 6 (30 de junio de 2017): 376–81. http://dx.doi.org/10.23956/ijarcsse/v7i6/0300.
Texto completoKumar Singh Anjali, Avanish. "Study of Clinical Evaluation of Glaucoma with Anterior Segment OCT (Optical Coherence Tomography) and Optic Nerve Head OCT (Optical Coherence Tomography)". International Journal of Science and Research (IJSR) 12, n.º 8 (5 de agosto de 2023): 627–32. http://dx.doi.org/10.21275/mr23728180729.
Texto completoHaisch, Christoph. "Optical Tomography". Annual Review of Analytical Chemistry 5, n.º 1 (19 de julio de 2012): 57–77. http://dx.doi.org/10.1146/annurev-anchem-062011-143138.
Texto completoCoufal, Hans. "Optical tomography?" Journal of Molecular Structure 347 (marzo de 1995): 285–91. http://dx.doi.org/10.1016/0022-2860(95)08551-6.
Texto completoLeutwyler, Kristin. "Optical Tomography". Scientific American 270, n.º 1 (enero de 1994): 147–49. http://dx.doi.org/10.1038/scientificamerican0194-147.
Texto completoDavis, Cole y Wayne Kuang. "Optical coherence tomography: a novel modality for scrotal imaging". Canadian Urological Association Journal 3, n.º 4 (1 de mayo de 2013): 319. http://dx.doi.org/10.5489/cuaj.1128.
Texto completoSoeda, Tsunenari, Shiro Uemura, Yoshihiko Saito, Kyoichi Mizuno y Ik-Kyung Jang. "Optical Coherence Tomography and Coronary Plaque Characterization". Journal of the Japanese Coronary Association 19, n.º 4 (2013): 307–14. http://dx.doi.org/10.7793/jcoron.19.033.
Texto completoC. Kharmyssov, C. Kharmyssov, M. W. L. Ko M. W. L. Ko y J. R. Kim J. R. Kim. "Automated segmentation of optical coherence tomography images". Chinese Optics Letters 17, n.º 1 (2019): 011701. http://dx.doi.org/10.3788/col201917.011701.
Texto completoRollins, Andrew M. y Joseph A. Izatt. "Optimal interferometer designs for optical coherence tomography". Optics Letters 24, n.º 21 (1 de noviembre de 1999): 1484. http://dx.doi.org/10.1364/ol.24.001484.
Texto completoTesis sobre el tema "Optical tomography"
Xu, Weiming. "Offset Optical Coherence Tomography". Miami University / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=miami1626870603439104.
Texto completoHuang, David. "Optical coherence tomography". Thesis, Massachusetts Institute of Technology, 1993. http://hdl.handle.net/1721.1/12675.
Texto completoMuscat, Sarah. "Optical coherence tomography". Thesis, Connect to e-thesis, 2003. http://theses.gla.ac.uk/630/.
Texto completoPh.D. thesis submitted to the Department of Cardiovascular and Medical Sciences, Faculty of Medicine, University of Glasgow, 2003. Includes bibliographical references. Print version also available.
Nam, Haewon. "Ultrasound-modulated optical tomography". Texas A&M University, 2002. http://hdl.handle.net/1969/448.
Texto completoAkcay, Avni Ceyhun. "System design and optimization of optical coherence tomography". Doctoral diss., University of Central Florida, 2005. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/3586.
Texto completoPh.D.
Optics and Photonics
Optics
Beitel, David. "Development of optical sources for optical coherence tomography". Thesis, McGill University, 2007. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=112557.
Texto completoFrom our experimental results with BBSs, we conclude that: (1) S/C-band output produced by the ASE emitted from two cascaded SOAs can be effectively extended with L-band output produced from the ASE of EDF; (2) An even broader output is achievable by: coupling the C-band and L-band outputs from a C-band SOA and EDF respectively and then amplifying the coupled output through an S-band SOA; (3) OCT imaging systems employing a light source with an S+C+L band output, with a center wavelength of approximately 1520 nm, can achieve high penetration depths in biological tissue.
From our experimental results with SFRLs, we conclude that: (1) Our two SFRL configurations generate picosecond pulses with reasonably narrow linewidths: 0.2--0.5 nm, and a sweeping range of about 50 nm; (2) These SFRLs can function as laser swept sources by setting the driving frequency of the RF generator to a periodic ramping function.
Behrooz, Ali. "Multiplexed fluorescence diffuse optical tomography". Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50401.
Texto completoWatson, Thomas. "Advances in optical projection tomography". Thesis, Imperial College London, 2017. http://hdl.handle.net/10044/1/58486.
Texto completoBateni, Vahid. "Isogeometric Approach to Optical Tomography". Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103863.
Texto completoDoctor of Philosophy
CT scans can save lives by allowing medical practitioners observe inside the patient's body without use of invasive surgery. However, they use high energy, potentially harmful x-rays to penetrate the organs. Due to limits of the mathematical algorithm used to reconstruct the 3D figure of the organs from the 2D x-ray images, many such images are required. Thus, a high level of x-ray exposure is necessary, which in periodic use can be harmful. Optical Tomography is a promising alternative which replaces x-rays with harmless Near-infrared (NIR) visible light. However, NIR photons have lower energy and tend to scatter before leaving the organs. Therefore, an additional algorithm is required to predict the distribution of light photons inside the body and their resulting 2D images. This is called the forward problem of Optical Tomography. Only then, like conventional CT scans, can another algorithm, called the inverse solution, reconstruct the 3D image by diminishing the difference between the predicted and registered images. Currently Optical Tomography cannot replace x-ray CT scans for most cases, due to shortcomings in the forward and inverse algorithms to handle real life usages. One obstacle stems from the fact that the forward problem must be solved numerous times for the inverse solution to reach the correct visualization. However, the current numerical method, Finite Element Method (FEM), has limitations in generating accurate solutions fast enough using economically viable computers. This limitation is mostly caused by the FEM's use of a simpler mathematical construct that requires more computations and is limited in accurately modelling the geometry and shape. This research implements the recently developed Isogeometric Analysis (IGA) and particularly IGA-based FEM to address this issue. The IGA-based FEM uses the same mathematical construct that is used to visualize the geometry for complicated applications such as some animations and computer games. They are also less complicated to apply due to much lower need for partitioning the domain. This study applies the IGA method to solve the forward problem of diffuse Optical Tomography and compare the accuracy and speed of IGA solution to the conventional FEM solution. The comparison reveals that while both methods can reach high accuracy, the IGA solutions are relatively more accurate. Also, while low accuracy FEM solutions have shorter runtimes, in solutions with required higher accuracy levels, the IGA proves to be considerably faster.
Armstrong, Julian. "Anatomical optical coherence tomography in the human upper airway". University of Western Australia. School of Electrical, Electronic and Computer Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2007.0022.
Texto completoLibros sobre el tema "Optical tomography"
Bernardes, Rui y José Cunha-Vaz, eds. Optical Coherence Tomography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27410-7.
Texto completoGirach, Aniz y Robert C. Sergott, eds. Optical Coherence Tomography. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-24817-2.
Texto completoDrexler, Wolfgang y James G. Fujimoto, eds. Optical Coherence Tomography. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-77550-8.
Texto completoSaxena, Sandeep. Optical coherence tomography. New York, NY: McGraw-Hill Medical, 2008.
Buscar texto completo1942-, Meredith Travis A. y Saxena Sandeep, eds. Optical coherence tomography. New York, NY: McGraw-Hill, 2008.
Buscar texto completo1964-, Bouma Brett E. y Tearney Guillermo J, eds. Handbook of optical coherence tomography. New York: Marcel Dekker, 2002.
Buscar texto completoAkman, Ahmet, Atilla Bayer y Kouros Nouri-Mahdavi, eds. Optical Coherence Tomography in Glaucoma. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94905-5.
Texto completoF, Steinert Roger y Huang David, eds. Anterior segment optical coherence tomography. Thorofare, NJ: SLACK, 2008.
Buscar texto completoF, Steinert Roger y Huang David, eds. Anterior segment optical coherence tomography. Thorofare, NJ: SLACK, 2008.
Buscar texto completoSteinert, Roger y David Huang. Anterior Segment Optical Coherence Tomography. Boca Raton: CRC Press, 2024. http://dx.doi.org/10.1201/9781003522560.
Texto completoCapítulos de libros sobre el tema "Optical tomography"
Chen, Zhongping. "Optical Coherence Tomography and Optical Doppler Tomography". En Encyclopedia of Microfluidics and Nanofluidics, 2529–35. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4614-5491-5_1155.
Texto completoChen, Zhongping. "Optical Coherence Tomography and Optical Doppler Tomography". En Encyclopedia of Microfluidics and Nanofluidics, 1–7. Boston, MA: Springer US, 2014. http://dx.doi.org/10.1007/978-3-642-27758-0_1155-2.
Texto completoFernández, Enrique Josua y Pablo Artal. "Adaptive Optics in Ocular Optical Coherence Tomography". En Optical Coherence Tomography, 209–35. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27410-7_10.
Texto completoZhou, Xuyang y Zhengjun Liu. "Computerized Tomography". En Computational Optical Imaging, 101–34. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-1455-1_4.
Texto completoReif, Roberto y Ruikang K. Wang. "Optical Microangiography Based on Optical Coherence Tomography". En Optical Coherence Tomography, 1373–97. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-06419-2_45.
Texto completoSahoo, Niroj Kumar, Priya R. Chandrasekaran, Ninan Jacob y Gemmy Cheung. "Optical Coherence Tomography and Optical Coherence Tomography-Angiography". En Ophthalmic Diagnostics, 361–85. Singapore: Springer Nature Singapore, 2024. http://dx.doi.org/10.1007/978-981-97-0138-4_28.
Texto completoGao, Feng. "Diffuse Optical Tomography". En Advanced Topics in Science and Technology in China, 47–184. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-34303-2_3.
Texto completoHaeussler-Sinangin, Yesim y Thomas Kohnen. "Optical Coherence Tomography". En Encyclopedia of Ophthalmology, 1–2. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-642-35951-4_407-4.
Texto completoNolte, David D. "Optical Coherence Tomography". En Optical Interferometry for Biology and Medicine, 297–306. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-0890-1_11.
Texto completoTsang, Stephen H. y Tarun Sharma. "Optical Coherence Tomography". En Advances in Experimental Medicine and Biology, 11–13. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95046-4_3.
Texto completoActas de conferencias sobre el tema "Optical tomography"
Chapman, Joseph C., Joseph M. Lukens, Bing Qi, Raphael C. Pooser y Nicholas A. Peters. "Bayesian Optical Heterodyne Tomography". En CLEO: QELS_Fundamental Science. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/cleo_qels.2022.ftu5a.5.
Texto completoBrunner, Elisabeth, Laura Kunze, Ursula Schmidt-Erfurth, Wolfgang Drexler, Andreas Pollreisz y Michael Pircher. "Focusing on anterior retinal layers with adaptive optics optical coherence tomography". En Optical Coherence Tomography. Washington, D.C.: Optica Publishing Group, 2024. http://dx.doi.org/10.1364/oct.2024.thd1.1.
Texto completoLin, Yuechuan, Nichaluk Leartprapun y Steven G. Adie. "High-throughput lightsheet optical manipulation and measurement with optical coherence tomography". En Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.otu1e.4.
Texto completoWax, Adam. "Applications of Low Cost Optical Coherence Tomography". En Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om2e.2.
Texto completoBorycki, Dawid, Egidijus Auksorius, Piotr Węgrzyn y Maciej Wojtkowski. "Digital aberration correction in spatiotemporal optical coherence (STOC) imaging with coherent averaging". En Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om2e.4.
Texto completoSchmetterer, Leopold, Rene M. Werkmeister, Damon Wing Kee Wong, Bingyao Tan, Xinwen Yao, Jacqueline Chua y Gerhard Garhofer. "Quantitative Perfusion Measurements based on Doppler OCT and OCT Angiography". En Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om3e.1.
Texto completoAuksorius, Egidijus, Dawid Borycki y Maciej Wojtkowski. "Crosstalk-free in vivo imaging of a human retina with Fourier-domain full-field optical coherence tomography". En Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om3e.2.
Texto completoMujat, Mircea, Yang Lu, Gopi Maguluri, Nicusor Iftimia y R. Daniel Ferguson. "Isotropic Imaging of Retinal Structures with Multi-Channel AOSLO". En Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om3e.3.
Texto completoPark, Hyeon-Cheol, Dawei Li, Runyu Tang, Cadman L. Leggett, Kenneth K. Wang y Xingde Li. "Ex vivo Human Esophageal Tissue Imaging with Ultrahigh-resolution OCT Capsule". En Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om4e.3.
Texto completoPfister, Martin, Kornelia Schuetzenberger, Jasmin Schaefer, Hannes Stegmann, Martin Groeschl y René M. Werkmeister. "Identifying Diabetes in Mice using Optical Coherence Tomography Angiography Images of the Ears and Deep Learning". En Optical Coherence Tomography. Washington, D.C.: OSA, 2020. http://dx.doi.org/10.1364/oct.2020.om4e.4.
Texto completoInformes sobre el tema "Optical tomography"
Xu, Min y Melvin Lax. Time-Resolved Spectral Optical Breast Tomography. Fort Belvoir, VA: Defense Technical Information Center, junio de 2004. http://dx.doi.org/10.21236/ada427245.
Texto completoXu, Min y Melvin Lax. Time-Resolved Spectral Optical Breast Tomography. Fort Belvoir, VA: Defense Technical Information Center, junio de 2003. http://dx.doi.org/10.21236/ada418030.
Texto completoYodh, Arjun G. Parallel, Rapid Diffuse Optical Tomography of Breast. Fort Belvoir, VA: Defense Technical Information Center, julio de 2001. http://dx.doi.org/10.21236/ada396638.
Texto completoRaymer, Michael G. Optical Field Reconstruction Using Phase-Space Tomography. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1999. http://dx.doi.org/10.21236/ada379215.
Texto completoPiao, Daqing. Transrectal Near-Infrared Optical Tomography for Prostate Imaging. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2009. http://dx.doi.org/10.21236/ada509892.
Texto completoAlfano, Robert R. y S. K. Gayen. Time-Resolved and Spectroscopic Three-Dimensional Optical Breast Tomography. Fort Belvoir, VA: Defense Technical Information Center, abril de 2008. http://dx.doi.org/10.21236/ada492472.
Texto completoAlfano, Robert R. Time-Resolved and Spectroscopic Three-Dimensional Optical Breast Tomography. Fort Belvoir, VA: Defense Technical Information Center, abril de 2006. http://dx.doi.org/10.21236/ada464218.
Texto completoFujimoto, James G. Advanced Technologies for Ultrahigh Resolution and Functional Optical Coherence Tomography. Fort Belvoir, VA: Defense Technical Information Center, abril de 2008. http://dx.doi.org/10.21236/ada482111.
Texto completoSuter, Melissa J. Electromagnetic-Optical Coherence Tomography Guidance of Transbronchial Solitary Pulmonary Nodule Biopsy. Fort Belvoir, VA: Defense Technical Information Center, julio de 2014. http://dx.doi.org/10.21236/ada614445.
Texto completoBennett, Hollis H., Goodson Jr., Curtis Ricky A. y John O. Computed-Tomography Imaging SpectroPolarimeter (CTISP) - A Passive Optical Sensor. Volume 2. Appendix B. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2001. http://dx.doi.org/10.21236/ada399664.
Texto completo