Literatura académica sobre el tema "Optical fibers"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Optical fibers".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Optical fibers"

1

Jóźwicki, Mateusz Łukasz, Mateusz Gargol, Małgorzata Gil-Kowalczyk y Paweł Mergo. "Commercially available granulates PMMA and PS - potential problems with the production of polymer optical fibers". Photonics Letters of Poland 12, n.º 3 (30 de septiembre de 2020): 79. http://dx.doi.org/10.4302/plp.v12i3.1036.

Texto completo
Resumen
The aim of the study was to verify the usefulness of commercially available granulates of PMMA (poly (methyl methacrylate) and PS (polystyrene) for the production of polymer optical fibers by extrusion method. Samples were subjected to thermal processing in various conditions (different temperatures and exposure time). Thermal (TG/DTG) and spectroscopic (ATR/FT-IR) analyses were carried out to analyze changes in the samples. Based on FT-IR analysis of liquid monomers and granulates the conversion of double bonds was calculated, which gave us a picture of the degree of monomers conversion, crucial information from the technological point of view. Full Text: PDF ReferencesO. Ziemann, J. Krauser, P.E. Zamzow, W. Daum, POF Polymer Optical Fibersfor Data Communication (Berlin: Springer 2008). DirectLink P. Stajanca et al. "Solution-mediated cladding doping of commercial polymer optical fibers", Opt. Fiber Technol. 41, 227-234, (2018). CrossRef K. Peters, "Polymer optical fiber sensors—a review", Smart Mater. Struct., 20 013002 (2011) CrossRef J. Zubia and J. Arrue, "Plastic Optical Fibers: An Introduction to Their Technological Processes and Applications", Opt. Fiber Technol. 7 ,101-40 (2001) CrossRef M. Beckers, T. Schlüter, T. Gries, G. Seide, C.-A. Bunge, "6 - Fabrication techniques for polymer optical fibres", Polymer Optical Fibres, 187-199 (2017) CrossRef M. Niedźwiedź , M. Gil, M. Gargol , W. Podkościelny, P. Mergo, "Determination of the optimal extrusion temperature of the PMMA optical fibers", Phot. Lett. Poland 11, 7-9 (2019) CrossRef
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Krivenko, Yu E. y E. I. Andreeva. "Traffic interception in fiber optical video-systems". Journal of Physics: Conference Series 2086, n.º 1 (1 de diciembre de 2021): 012150. http://dx.doi.org/10.1088/1742-6596/2086/1/012150.

Texto completo
Resumen
Abstract In fiber-optic video systems, as well as in optical communication systems, standard single mode optical fibers (SSMF, standard G.652) are usually used. One of the advantages of these fibers is the ability to use CWDM in a wide spectrum. At the same time, more optimal near the wave-length of 1550 nm are provided by non-zero dispersion fiber (NZDSF, standard G.655) fibers. However, as studies have shown, these optical fibers have an increased sensitivity to bending. This fact can be used to traffic interception. It is shown that fiber-optics systems with SSMF have more protection from traffic interception than systems with NZDSF. To transmit a high-confidentiality video signal, special techniques, such as frequency modulation, can be used, or additional noise signals can be added.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Tandon, Pushkar, Ming-Jun Li, Dana C. Bookbinder, Stephan L. Logunov y Edward J. Fewkes. "Nano-engineered optical fibers and applications". Nanophotonics 2, n.º 5-6 (16 de diciembre de 2013): 383–92. http://dx.doi.org/10.1515/nanoph-2013-0032.

Texto completo
Resumen
AbstractThe paper reviews optical fibers with nano-engineered features and methods to fabricate them. These optical fibers have nano-engineered regions comprising of randomly distributed voids which provide unique properties for designing next generation of fibers. Discussion of impact of void morphology on fiber optical properties is presented, along with the methods to control the void characteristics. Use of nano-engineered fibers for different applications (ultra-low bend loss single mode fiber, quasi-single mode bend loss fiber, endless single-mode fiber, light diffusing fibers) is discussed and the unique optical attributes of the fibers in these applications is highlighted.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Cozic, Solenn, Simon Boivinet, Christophe Pierre, Johan Boulet, Samuel Poulain y Marcel Poulain. "Splicing fluoride glass and silica optical fibers". EPJ Web of Conferences 215 (2019): 04003. http://dx.doi.org/10.1051/epjconf/201921504003.

Texto completo
Resumen
Splicing fluoride glass fibers and silica fibers is a critical point for manufacturing all fibered laser modules. As these materials are extremely different, various problems must be considered: thermal, expansion, mechanical, chemical. Reliability and power handling make priority concerns. We report splices made on a 200/220 multimode silica fiber and a double clad 15/250/290 ZBLAN fiber. Splices are proof tested at 300 g tensile strength. No damage is observed after thermal cycling from -30 °C to 85 °C, at 40 % RH during 24 hours. Typical optical splice loss is about 0.2 dB. They withstand 220 W input power at 976 nm without any damage and drastic temperature increasing.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Boyd, Robert W. y Eric L. Buckland. "Nonlinear Optical Interactions in Optical Fibers". Journal of Nonlinear Optical Physics & Materials 07, n.º 01 (marzo de 1998): 105–12. http://dx.doi.org/10.1142/s0218863598000089.

Texto completo
Resumen
We report on our research program aimed at clarifying the physical processes leading to the nonlinear optical response of silica optical fibers and at studying the implications of optical nonlinearities on optical pulse propagation and optical switching devices. The dominant physical processes leading to the nonlinear optical response of an optical fiber are nonresonant electronic polarization, with essentially instantaneous response, the Raman interaction, with sub-picosecond response, and electrostriction, with nanosecond response. We present experimental results that show the consequence of each of these processes on the propagation of a light pulse through an optical fiber. We have also performed one of the first direct measurements of the electrostrictive contribution to the nonlinear refractive index of optical fibers. We measure values ranging from 1.5 × 10-16 to 5.8 × 10-16 cm2/W , depending on fiber type. These values are comparable to that of the fast, Kerr nonlinearity (i.e., sum of electronic and Raman contributions) of 2.5 × 10-16 cm2/W . The measured electrostrictive nonlinearities are significantly larger than those predicted by simple models, and the possible explanations of this difference are discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Romaniuk, Ryszard S. y Waldemar Wójcik. "Optical Fiber Technology 2012". International Journal of Electronics and Telecommunications 59, n.º 2 (1 de junio de 2013): 131–40. http://dx.doi.org/10.2478/eletel-2013-0016.

Texto completo
Resumen
Abstract The Conference on Optical Fibers and Their Applications, Nałȩczów 2012, in its 14th edition, which has been organized since more than 35 years, has summarized the achievements of the local optical fiber technology community, for the last year and a half. The conference specializes in developments of optical fiber technology, glass and polymer, classical and microstructured, passive and active. The event gathered around 100 participants. There were shown 60 presentations of 20 research and application groups active in fiber photonics, originating from academia and industry. Topical tracks of the Conference were: photonic materials, planar waveguides, passive and active optical fibers, propagation theory in nonstandard optical fibers, and new constructions of optical fibers. A panel discussion concerned teaching in fiber photonics. The conference was accompanied by a school on Optical Fiber Technology. The paper summarizes the chosen main topical tracks of the conference on Optical Fibers and Their Applications, Nałȩczów 2012. The papers from the conference presentations will be published in Proc. SPIE, including a conference version of this paper. The next conference of this series is scheduled for January 2014 in Białowie˙za.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Barczak, K. "Magnetooptic effect of photonic crystal fiber in blue region of visible spectrum". Bulletin of the Polish Academy of Sciences Technical Sciences 62, n.º 4 (1 de diciembre de 2014): 683–89. http://dx.doi.org/10.2478/bpasts-2014-0074.

Texto completo
Resumen
Abstract The phenomenon of optical birefringence in optical fibers is caused by external factors and stress induced by the manufacturing process. This optical birefringence makes it difficult to apply optical fibers as a polarimetric sensors head. Author of this paper, proposes the application of index guiding photonic crystal fibers because stress values in a fiber core caused by internal and external factors are lower. In this paper investigation results extended in comparison with the previous author’s investigations are presented. This extension relies on investigation of magnetooptic for wavelength 405 nm. On the basis of experimental results optimal work points of optical sensing fibers were determined.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Pickrell, Gary R., Evgenya S. Smirnova, Stanton L. De Haven y Robert S. Rogowski. "Hybrid Ordered Hole-Random Hole Optical Fibers". Advances in Science and Technology 45 (octubre de 2006): 2598–607. http://dx.doi.org/10.4028/www.scientific.net/ast.45.2598.

Texto completo
Resumen
Photonic band gap (PBG) fibers have generated significant interest over the last decade due to the unique set of properties these fibers exhibit. In general, these fibers have been made by drawing a series of glass tubes (which are stacked in an ordered array) into a fiber. These fibers consist of an ordered arrangement of holes or tubes in a glass matrix. In this invited paper we describe a novel type of fiber, called HORHOFs (hybrid ordered random hole optical fibers). In these fibers, the refractive index of the ordered-hole region is controlled by incorporation of very small tubes of glass produced in-situ during the fiber drawing process. The result is a region of controllable glass density inside the “ordered hole”. This allows tailoring of the refractive index of the hole region and of the matrix glass around the holes. Description of the process to produce these new types of fibers, micrographs of some of the fibers produced, some potential applications, and the results of some computer modeling to predict the properties of these fibers, are presented.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Sumetsky, M. "Nanophotonics of optical fibers". Nanophotonics 2, n.º 5-6 (16 de diciembre de 2013): 393–406. http://dx.doi.org/10.1515/nanoph-2013-0041.

Texto completo
Resumen
AbstractThis review is concerned with nanoscale effects in highly transparent dielectric photonic structures fabricated from optical fibers. In contrast to those in plasmonics, these structures do not contain metal particles, wires, or films with nanoscale dimensions. Nevertheless, a nanoscale perturbation of the fiber radius can significantly alter their performance. This paper consists of three parts. The first part considers propagation of light in thin optical fibers (microfibers) having the radius of the order of 100 nanometers to 1 micron. The fundamental mode propagating along a microfiber has an evanescent field which may be strongly expanded into the external area. Then, the cross-sectional dimensions of the mode and transmission losses are very sensitive to small variations of the microfiber radius. Under certain conditions, a change of just a few nanometers in the microfiber radius can significantly affect its transmission characteristics and, in particular, lead to the transition from the waveguiding to non-waveguiding regime. The second part of the review considers slow propagation of whispering gallery modes in fibers having the radius of the order of 10–100 microns. The propagation of these modes along the fiber axis is so slow that they can be governed by extremely small nanoscale changes of the optical fiber radius. This phenomenon is exploited in SNAP (surface nanoscale axial photonics), a new platform for fabrication of miniature super-low-loss photonic integrated circuits with unprecedented sub-angstrom precision. The SNAP theory and applications are overviewed. The third part of this review describes methods of characterization of the radius variation of microfibers and regular optical fibers with sub-nanometer precision.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Carmo, J. P. y J. E. Ribeiro. "Optical Fibers on Medical Instrumentation". International Journal of Biomedical and Clinical Engineering 2, n.º 2 (julio de 2013): 23–36. http://dx.doi.org/10.4018/ijbce.2013070103.

Texto completo
Resumen
This paper provides a revision with the state-of-the-art related to the use of optical fiber sensors on medical instrumentation. Two types of optical fiber sensors are the focus of review: conventional optical fibers for communications and fiber Bragg gratings (FBGs).
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Optical fibers"

1

Washburn, Brian Richard. "Dispersion and nonlinearities associated with supercontinuum generation in microstructure fibers". Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/30964.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Richmond, Eric William. "Birefringent single-arm fiber optic enthalpimeter for catalytic reaction monitoring". Diss., This resource online, 1990. http://scholar.lib.vt.edu/theses/available/etd-07282008-135248/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kuhlmey, Boris T. "Theoretical and numerical investigation of the physics of microstructured optical fibres". Connect to full text, 2004. http://setis.library.usyd.edu.au/adt/public_html/adt-NU/public/adt-NU20040715.171105.

Texto completo
Resumen
Thesis (Ph. D.)--School of Physics, Faculty of Science, University of Sydney, 2004. (In conjunction with: Université de Droit, d'Économie et des Sciences d'Aix-Marseille (Aix Marseille III)).
Bibliography: leaves 196-204.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kominsky, Daniel. "Development of Random Hole Optical Fiber and Crucible Technique Optical Fibers". Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/28949.

Texto completo
Resumen
This dissertation reports the development of two new categories of optical fibers. These are the Random Hole Optical Fiber (RHOF) and the Crucible Technique Hybrid Fiber (CTF). The RHOF is a new class of microstructure fiber which possesses air holes which vary in diameter and location along the length of the fiber. Unlike all prior microstructure fibers, these RHOF do not have continuous air holes which extend throughout the fiber. The CTF is a method for incorporating glasses with vastly differing thermal properties into a single optical fiber. Each of these two classes of fiber brings a new set of optical characteristics into being. The RHOF exhibit many of the same guidance properties as the previously researched microstructure fibers, such as reduced mode counts in a large area core. CTF fibers show great promise for integrating core materials with extremely high levels of nonlinearity or gain. The initial goal of this work was to combine the two techniques to form a fiber with exceedingly high efficiency of nonlinear interactions. Numerous methods have been endeavored in the attempt to achieve the fabrication of the RHOF. Some of the methods include the use of sol-gel glass, microbubbles, various silica powders, and silica powders with the incorporation of gas producing agents. Through careful balancing of the competing forces of surface tension and internal pressure it has been possible to produce an optical fiber which guides light successfully. The optical loss of these fibers depends strongly on the geometrical arrangement of the air holes. Fibers with a higher number of smaller holes possess a markedly lower attenuation. RHOF also possess, to at least some degree the reduced mode number which has been extensively reported in the past for ordered hole fibers. Remarkably, the RHOF are also inherently pressure sensitive. When force is applied to an RHOF either isotropically, or on an axis perpendicular to the length of the fiber, a wavelength dependent loss is observed. This loss does not come with a corresponding response to temperature, rendering the RHOF highly anomalous in the area of fiber optic sensing techniques. Furthermore an ordered hole fiber was also tested to determine that this was not merely a hitherto undisclosed property of all microstructure fibers. Crucible technique fibers have also been fabricated by constructing an extremely thick walled silica tube, which is sealed at the bottom. A piece of the glass that is desired for the core (such as Lead Indium Phosphate) is inserted into the hole which is in the center of the tube. The preform is then drawn on an fiber draw tower, resulting in a fiber with a core consisting of a material which has a coefficient of thermal expansion (CTE) or a melting temperature (Tm) which is not commonly compatible with those of silica.
Ph. D.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Polley, Arup. "High performance multimode fiber systems a comprehensive approach /". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/31699.

Texto completo
Resumen
Thesis (Ph.D)--Electrical and Computer Engineering, Georgia Institute of Technology, 2009.
Committee Chair: Ralph, Stephen; Committee Member: Barry, John; Committee Member: Chang, G. K.; Committee Member: Cressler, John D.; Committee Member: Trebino. Part of the SMARTech Electronic Thesis and Dissertation Collection.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Hao, Miin-Jong. "Performance evaluation of practival FSK, CPFSK, and ASK detection schemes for coherent optical fiber communication systems". Diss., Georgia Institute of Technology, 1995. http://hdl.handle.net/1853/15686.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Paye, Corey. "An Analysis of W-fibers and W-type Fiber Polarizers". Thesis, Virginia Tech, 2001. http://hdl.handle.net/10919/32474.

Texto completo
Resumen
Optical fibers provide the means for transmitting large amounts of data from one place to another and are used in high precision sensors. It is important to have a good understanding of the fundamental properties of these devices to continue to improve their applications. A specially type of optical fiber known as a W-fiber has some desirable properties and unique characteristics not found in matched-cladding fibers. A properly designed W- fiber supports a fundamental mode with a finite cutoff wavelength. At discrete wavelengths longer than cutoff, the fundamental mode experiences large amounts of loss. The mechanism for loss can be described in terms of interaction between the fiberâ ¢s supermodes and the lossy interface at the fiberâ ¢s surface. Experiments and computer simulations support this model of W-fibers. The property of a finite cutoff wavelength can be used to develop various fiber devices. Under consideration here is the fiber polarizer. The fiber polarizer produces an output that is linearly polarized along one of the fiberâ ¢s principal axes. Some of the polarizer properties can be understood from the study of W-fibers.
Master of Science
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

MURA, EMANUELE. "PHOPSHATE OPTICAL FIBERS FOR IR FIBER LASERS". Doctoral thesis, Politecnico di Torino, 2014. http://hdl.handle.net/11583/2544536.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Robinson, Risa J. "Polarization modulation and splicing techniques for stressed birefringent fiber /". Online version of thesis, 1995. http://hdl.handle.net/1850/12228.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Lyyttkäinen, Katja Johanna. "Control of complex structural geometry in optical fibre drawing /". Connect to full text, 2004. http://setis.library.usyd.edu.au/adt/public_html/adt-NU/public/adt-NU20041011.120247.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Optical fibers"

1

Midwinter, John E. Optical fibers for transmission. Malabar, FL: Krieger Pub. Co., 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

C, Schlesinger Jürgen, ed. Optical fibers research advances. New York: Nova Science Publishers, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

S, Emersone Peter, ed. Progress in optical fibers. Hauppauge, NY: Nova Science Publishers, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Izawa, T. Optical fibers: Materials and fabrication. Tokyo: KTK Scientific Publishers, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Alexis, Méndez y Morse T. F, eds. Specialty optical fibers handbook. Amsterdam: Academic Press, 2007.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Cancellieri, Giovanni. Single-mode optical fibres. Oxford: Pergamon Press, 1991.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Buck, John A. Fundamentals of optical fibers. 2a ed. Hoboken, N.J: John Wiley & Sons, 2004.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Buck, John A. Fundamentals of optical fibers. New York: Wiley, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

1942-, Matsumura Hiroyoshi, ed. Infrared optical fibers. Bristol: A. Hilger, 1989.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Paschotta, Rüdiger. Field guide to optical fiber technology. Bellingham, Wash: SPIE Press, 2009.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Optical fibers"

1

Veit, Dieter. "Optical Fibers". En Fibers, 819–27. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-15309-9_40.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Ahluwalia, Gurinder Kaur. "Optical Fibers". En Applications of Chalcogenides: S, Se, and Te, 161–96. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-41190-3_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Sabella, R. y P. Lugli. "Optical Fibers". En High Speed Optical Communications, 56–73. Boston, MA: Springer US, 1999. http://dx.doi.org/10.1007/978-1-4615-5275-8_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Koshiba, Masanori. "Optical Fibers". En Optical Waveguide Theory by the Finite Element Method, 113–31. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-1634-3_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Chartier, Thierry. "Optical Fibers". En Springer Handbook of Glass, 1405–39. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-319-93728-1_41.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Degiorgio, Vittorio y Ilaria Cristiani. "Optical Fibers". En Photonics, 171–92. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20627-1_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Nolan, Daniel A., Paul E. Blaszyk y Eric Udd. "Optical Fibers". En Fiber Optic Sensors, 9–33. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118014103.ch2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ghatak, Ajoy y K. Thyagarajan. "Optical Fibers". En Springer Handbook of Lasers and Optics, 1171–208. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-19409-2_14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Personick, Stewart D. "Optical Fibers". En Fiber Optics, 6–45. Boston, MA: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4899-3478-9_2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Gooch, Jan W. "Optical Fibers". En Encyclopedic Dictionary of Polymers, 504. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_8217.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Optical fibers"

1

Banerjee, Hritwick, Nicola Bartolomei y Fabien Sorin. "Soft Microstructured Optical Fibers via Thermal Drawing". En Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.som2h.1.

Texto completo
Resumen
The preform-to-fiber thermal drawing of thermoplastic elastomers enables the fabrication of soft multi-material optical fibers with complex architectures. It offers unprecedented opportunities to realize complex soft optical fibers for transmission and sensing.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Khramov, I. y O. Ryabushkin. "Fiber Laser Power Measurements Using Optical Fibers with Metal Winding". En Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.soth3g.3.

Texto completo
Resumen
Various optical fibers with copper winding were used for the real-time measuring the fiber lasers output optical power. The mathematical model of the fiber heating allowed determining the induced microbending losses.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lyu, Zhouping y Lyubov V. Amitonova. "Hollow-core fiber imaging". En Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.sotu4i.4.

Texto completo
Resumen
Multimode fibers serve as high-resolution imaging probes. We show that a hollow-core fiber solves the problems of high background and limited NA. We experimentally demonstrate high-NA raster-scan and compressive imaging through a hollow-core multimode fiber.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Knight, J. C. "Optics in Microstructured and Photonic Crystal Fibers". En Workshop on Specialty Optical Fibers and their Applications. Washington, D.C.: Optica Publishing Group, 2008. http://dx.doi.org/10.1364/wsof.2008.ps3.

Texto completo
Resumen
The development of optical fibers with two-dimensional patterns of air holes running down their length has reinvigorated research in the field of fiber optics. It has greatly–and fundamentally–broadened the range of specialty optical fibers, by demonstrating that optical fibers can be more “special” than previously thought. Fibers with air cores have made it possible to deliver energetic femtosecond-scale optical pulses, transform limited, as solitons, using single-mode fiber. Other fibers with anomalous dispersion at visible wavelengths have spawned a new generation of single-mode optical supercontinuum sources, spanning visible and near-infrared wavelengths and based on compact pump sources. A third example is in the field of fiber lasers, where the use of photonic crystal fiber concepts has led to a new hybrid laser technology, in which the very high numerical aperture available sing air holes have enabled fibers so short they are more naturally held straight than bent. This paper describes some of the basic physics and technology behind these developments, illustrated with some of the impressive demonstrations of the past 18 months.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Jiang, Shibin. "2 Micron Fiber Lasers Using Silicate Glass Fibers". En Specialty Optical Fibers. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/sof.2014.sotu2b.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Melli, F., K. Vasko, L. Rosa, L. Vincetti y F. Benabid. "Transverse Roughness Effect on Fundamental Mode Confinement Loss and Modal Content of Hollow-Core Inhibited Coupling Tube Lattice Fibers". En Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.sotu1i.3.

Texto completo
Resumen
The effects of the transverse surface roughness on fiber loss and modal content in hollow-core inhibited coupling tube lattice fibers is numerically investigated. Relationship between roughness spectrum and loss of core modes is assessed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Villatoro, Joel. "Coupled-core optical fiber sensing". En Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.soth1h.3.

Texto completo
Resumen
The use of optical fibers with coupled cores is proposed for sensing applications. The interrogation of coupled-core fiber sensors is simple, fast and inexpensive as the parameter being sensed can be detected as intensity changes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Jiang, Shibin. "Multi-Component Glass Fibers for 2 Micron Fiber Lasers". En Specialty Optical Fibers. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/sof.2011.somb4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Naghdi, Behnam, Lixian Wang, Manish Sharma y Zhiping Jiang. "Highly Dispersive yet Low Loss Hollow Core Fibers by Using a Combination of Anti-resonant and Resonant Elements". En Specialty Optical Fibers. Washington, D.C.: Optica Publishing Group, 2022. http://dx.doi.org/10.1364/sof.2022.sotu1i.6.

Texto completo
Resumen
To achieve a dispersive fiber, we propose and numerically investigate an approach based on adding resonant elements to anti-resonant hollow core fibers (AR-HCF). Dispersion as large as 17,600 ps.nm − 1.km − 1 is obtained along with < 21dB.km − 1 confinement loss.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Schuster, Kay, Hartmut Lehmann, Tino Elsmann, Tobias Habisreuther y Sebastian Dochow. "Specialty Fibers for Fiber-optic Sensors". En Optical Fiber Communication Conference. Washington, D.C.: OSA, 2014. http://dx.doi.org/10.1364/ofc.2014.tu3k.1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Optical fibers"

1

Rand, S. C. Optical Fibers for Nonlinear Optics. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1986. http://dx.doi.org/10.21236/ada174518.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bryant, George G. Fatigue Resistant Optical Fibers. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1991. http://dx.doi.org/10.21236/ada237568.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

DeShazer, Larry, Antonio Pastor y Stephen Rand. Investigation of Optical Fibers for Nonlinear Optics. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 1985. http://dx.doi.org/10.21236/ada164075.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Morse, T. F. Novel Optical Fibers and Devices. Fort Belvoir, VA: Defense Technical Information Center, mayo de 1995. http://dx.doi.org/10.21236/ada297050.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Miniscalco, W. J., T. Wei y P. K. Onorato. Radiation Hardened Silica-Based Optical Fibers. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1988. http://dx.doi.org/10.21236/ada206910.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Miniscalco, W. J., T. Wei y P. I. Onorato. Radiation Hardened Silica-Based Optical Fibers. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1986. http://dx.doi.org/10.21236/ada178466.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Menyuk, C. R. Pulse propagation in inhomogeneous optical fibers. Office of Scientific and Technical Information (OSTI), mayo de 1992. http://dx.doi.org/10.2172/7016315.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Hughes, R. J., G. G. Luther, G. L. Morgan, C. G. Peterson y C. Simmons. Quantum cryptography over underground optical fibers. Office of Scientific and Technical Information (OSTI), mayo de 1996. http://dx.doi.org/10.2172/251411.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Hill, Kent B. y Carl A. Villarruel. POTDR Measurements on Buried Optical Fibers. Fort Belvoir, VA: Defense Technical Information Center, agosto de 1998. http://dx.doi.org/10.21236/ada351903.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Engelsrath, A., B. L. Danielson y D. L. Franzen. Attenuation measurements on deformed optical fibers. Gaithersburg, MD: National Bureau of Standards, 1986. http://dx.doi.org/10.6028/nbs.ir.86-3052.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía