Siga este enlace para ver otros tipos de publicaciones sobre el tema: Ontology Alignement.

Tesis sobre el tema "Ontology Alignement"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 22 mejores tesis para su investigación sobre el tema "Ontology Alignement".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Ziani, Mina. "Conception d'une ontologie hybride à partir d'ontologies métier évolutives : intégration et alignement d'ontologies". Thesis, Lyon 3, 2012. http://www.theses.fr/2012LYO30081.

Texto completo
Resumen
Cette thèse se situe dans le champ de la gestion des connaissances à l’aide de modèles ontologiques. Pour représenter les connaissances de domaine, nous avons conçu une ontologie hybride à deux niveaux : au niveau local, chaque groupe d’experts (du même métier) a construit sa propre ontologie, au niveau global une ontologie consensuelle regroupant les connaissances partagées est créée de façon automatique. De plus, des liens sémantiques entre les éléments de différentes ontologies locales peuvent être ajoutés.Nous avons construit un système d’aide pour guider les experts dans le processus de création de liens sémantiques ou mises en correspondance. Ses particularités sont de proposer des mesures de similarité en fonction des caractéristiques des ontologies à aligner, de réutiliser des résultats déjà calculés et de vérifier la cohérence des mises en correspondances créées.Par ailleurs, les ontologies locales peuvent être mises à jour. Cela implique des changements au niveau de l’ontologie globale ainsi que des mises en correspondances créées. De ce fait, nous avons développé une approche, adaptée à notre domaine pour gérer l’évolution de l’ontologie hybride. En particulier, nous avons utilisé la notion de versions d’ontologies afin de garder trace de toutes les modifications apportées au niveau des ontologies et de pouvoir revenir à tout moment à une version précédente.Nous avons appliqué notre travail de recherche à la géotechnique qui est un domaine complexe impliquant des experts de différents métiers. Une plateforme logicielle est en cours de réalisation et permettra de tester la faisabilité de nos travaux
This thesis concerns the scope of knowledge management using ontological models.To represent domain knowledge, we design a hybrid ontology on two levels: In a local level, each experts’ group has designed its own ontology. In a global level, a consensual ontology containing all the shared knowledge is automatically created.We design a computer-aided system to help experts in the process of mapping creation. It allows experts to choice similarity measures relatively to the ontology characteristics, to reuse the calculated similarities and to verify the consistency of the created mappings.In addition, local ontologies can be updated. This involves modifications in the global ontology and on the created mappings. A relevant approach of our domain was developed.In particular, ontology versioning is used in order to keep a record of all the occurred modifications in the ontologies; it allows to return at any time a previous version of the hybrid ontology.The exploited domain is geotechnics which gathers various business experts. A prototype is in progress and currently does not still captures ontology evolution
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Abbas, Muhammad Aun. "A Unified Approach for Dealing with Ontology Mappings and their Defects". Thesis, Lorient, 2016. http://www.theses.fr/2016LORIS423/document.

Texto completo
Resumen
Un mapping d’ontologies est un ensemble de correspondances. Chaque correspondance relie des artefacts, typiquement concepts et propriétés, d’une ontologie avec ceux d’une autre ontologie. Le mapping entre ontologies a suscité beaucoup d’intérêt durant ces dernières années. En effet, le mapping d’ontologies est largement utilisé pour mettre en oeuvre de l’interopérabilité et intégration (transformation de données, réponse à la requête, composition de web service) dans les applications, et également dans la création de nouvelles ontologies. D’une part, vérifier l’exactitude (logique) d’un mapping est devenu un prérequis fondamentale à son utilisation. D’autre part, pour deux ontologies données, plusieurs mappings peuvent être établis, obtenus par différentes méthodes d’alignement, ou définis manuellement. L’utilisation de plusieurs mappings entre deux ontologies dans une seule application ou pour synthétiser un seul mapping tirant profit de ces plusieurs mappings, peut générer des erreurs dans l’application ou dans le mapping synthétisé car ces plusieurs mappings peuvent être contradictoires. Dans les deux situations décrites ci-dessus, l’exactitude, la non-contradiction et autres propriétés sont généralement exprimées de façon formelle et vérifiées dans le contexte des ontologies formelles (par exemple, lorsque les ontologies sont représentées en logique) La vérification de ces propriétés est généralement effectuée à l’aide d’un seul formalisme, exigeant d’une part que les ontologies soient représentées par ce seul formalisme et, d’autre part, qu’une représentation formelle des mappings soit fournie, complétée par des notions formalisant les propriétés recherchées. Cependant, il existe une multitude de formalismes hétérogènes pour exprimer les ontologies, allant des plus informels (par exemple, du texte contrôlé, des modèles en UML) aux formels (par exemple, des logiques de description ou des catégories). Ceci implique que pour appliquer les approches existantes, les ontologies hétérogènes doivent être traduites (ou juste transformées, si l’ontologie source est exprimée de façon informelle ou si la traduction complète pour maintenir l’équivalence n’est pas possible) dans un seul formalisme commun et les mappings sont reformulés à chaque fois : seulement à l’issu de ce processus, les propriétés recherchées peuvent être établies. Même si cela est possible, ce processus peut produire à la fois des mappings corrects et incorrects vis-à-vis de ces propriétés, en fonction de la traduction (transformation) opérée. En effet, les propriétés recherchées dépendent du formalisme employé pour exprimer les ontologies et les mappings. Dans cette dissertation, des différentes propriétés ont été a été reformulées d’une manière unifiée dans le contexte d’ontologies hétérogènes utilisant la théorie de Galois. Dans ce contexte, les ontologies sont représentées comme treillis, et les mappings sont reformulés comme fonctions entre ces treillis. Les treillis sont des structures naturelles pour la représentation directe d’ontologies sans obligation de traduire ou transformer les formalismes dans lesquels les ontologies sont exprimées à l’origine. Cette reformulation unifiée a permis d’introduire une nouvelle notion de mappings compatibles et incompatibles. Il est ensuite formellement démontré que cette nouvelle notion couvre plusieurs parmi les propriétés recherchées de mappings, mentionnées dans l’état de l’art. L’utilisation directe de mappings compatibles et incompatibles est démontrée par l’application à des mappings d’ontologies de haut niveau. La notion de mappings compatibles et incompatibles est aussi appliquée sur des ontologies de domaine, mettant en évidence comment les mappings incompatibles génèrent des résultats incorrects pour la fusion d’ontologies
An ontology mapping is a set of correspondences. Each correspondence relates artifacts, such as concepts and properties, of one ontology to artifacts of another ontology. In the last few years, a lot of attention has been paid to establish mappings between source ontologies. Ontology mapping is widely and effectively used for interoperability and integration tasks (data transformation, query answering, or web-service composition, to name a few), and in the creation of new ontologies. On the one side, checking the (logical) correctness of ontology mappings has become a fundamental prerequisite of their use. On the other side, given two ontologies, there are several ontology mappings between them that can be obtained by using different ontology matching methods or just stated manually. Using ontology mappings between two ontologies in combination within a single application or for synthesizing one mapping taking the advantage of two original mappings, may cause errors in the application or in the synthesized mapping because those original mappings may be contradictory (conflicting). In both situations, correctness is usually formalized and verified in the context of fully formalized ontologies (e.g. in logics), even if some “weak” notions of correctness have been proposed when ontologies are informally represented or represented in formalisms preventing a formalization of correctness (such as UML). Verifying correctness is usually performed within one single formalism, requiring on the one side that ontologies need to be represented in this unique formalism and, on the other side, a formal representation of mapping is provided, equipped with notions related to correctness (such as consistency). In practice, there exist several heterogeneous formalisms for expressing ontologies, ranging from informal (text, UML and others) to formal (logical and algebraic). This implies that, willing to apply existing approaches, heterogeneous ontologies should be translated (or just transformed if, the original ontology is informally represented or when full translation, keeping equivalence, is not possible) in one common formalism, mappings need each time to be reformulated, and then correctness can be established. This is possible but possibly leading to correct mappings under one translation and incorrect mapping under another translation. Indeed, correctness (e.g. consistency) depends on the underlying employed formalism in which ontologies and mappings are expressed. Different interpretations of correctness are available within the formal or even informal approaches questioning about what correctness is indeed. In the dissertation, correctness has been reformulated in the context of heterogeneous ontologies by using the theory of Galois connections. Specifically ontologies are represented as lattices and mappings as functions between those lattices. Lattices are natural structures for directly representing ontologies, without changing the original formalisms in which ontologies are expressed. As a consequence, the (unified) notion of correctness has been reformulated by using Galois connection condition, leading to the new notion of compatible and incompatible mappings. It is formally shown that the new notion covers the reviewed correctness notions, provided in distinct state of the art formalisms, and, at the same time, can naturally cover heterogeneous ontologies. The usage of the proposed unified approach is demonstrated by applying it to upper ontology mappings. Notion of compatible and incompatible ontology mappings is also applied on domain ontologies to highlight that incompatible ontology mappings give incorrect results when used for ontology merging
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Menad, Safaa. "Enrichissement et alignement sémantique d'οntοlοgies biοmédicales par mοdèles de langue". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR104.

Texto completo
Resumen
La première partie de cette thèse traite de la conception de modèles neuronaux siamois entraînés pour la similarité sémantique entre textes biomédicaux et de leur application à des tâches de TAL sur des documents biomédicaux. L’entraînement de ces modèles a été réalisé en plongeant les titres et résumés du corpus PubMed avec le thésaurus MeSH dans un même espace de représentation. Dans la seconde partie nous utilisons ces modèles pour aligner et enrichir les terminologies de l’UMLS (Unified Medical Language System) et automatiser l’intégration de nouvelles relations entre concepts similaires provenant notamment de maladies (DOID), de médicaments (DRON) et de symptômes. Ces relations enrichies permettent d’améliorer l’exploitation de ces ontologies, facilitant ainsi leur utilisation dans diverses applications cliniques et scientifiques. Nous proposons de plus des approches de validation à l’aide des ressources telles que les LLMs, l’OpenFDA, le Métathésaurus et le réseau sémantique de l’UMLS que nous complétons par la validation manuelle d’experts du domaine
The first part of this thesis addresses the design of siamese neural models trained for semantic similarity between biomedical texts and their application to NLP tasks on biomedical documents. The training of these models was performed by embedding the titles and abstracts from the PubMed corpus along with the MeSH thesaurus into a common space. In the second part, we use these models to align and enrich the terminologies of UMLS (Unified Medical Language System) and automate the integration of new relationships between similar concepts, particularly from diseases (DOID), drugs (DRON), and symptoms. These enriched relationships enhance the usability of these ontologies, thereby facilitating their application in various clinical and scientific domains. Additionally, we propose validation approaches using resources such as LLMs, OpenFDA, the UMLS Metathesaurus, and the UMLS semantic network, supplemented by manual validation from domain experts
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Song, Fuqi. "Contribution à l'interopérabilité des entreprises par alignement d'ontologies". Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00909637.

Texto completo
Resumen
Cette thèse propose l'utilisation de l'alignement d'ontologies pour contribuer à l'interopérabilité d'une fédération d'entreprises en se basant sur l'interopérabilité des données au niveau sémantique. Une approche d'alignement basée sur des modèles d'ontologie utilisant les mots noyaux est proposée en réponse aux problèmes et aux défis existants, visant ainsi à améliorer la capacité d'adaptation et la précision dans la mise en correspondance de concepts. De plus une étape d'agrégation des " matchers " analytique, qui permet de combiner automatiquement plusieurs adaptateurs et d'améliorer les résultats combinés, vient compléter l'approche. Un système prototype a été mis en œuvre à l'issue des travaux conceptuels pour la validation de l'approche proposée. Les expériences démontrent que l'approche proposée a obtenu des résultats prometteurs et a atteint les objectifs escomptés sur la définition de proximité des concepts. L'approche d'alignement d'ontologies proposée et le système de prototype mis en œuvre ont enfin été appliqués à une architecture dirigée par les ontologies et axée sur l'interrogation des données de plusieurs bases de données relationnelles.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Fan, Zhengjie. "Concise Pattern Learning for RDF Data Sets Interlinking". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENM013/document.

Texto completo
Resumen
De nombreux jeux de données sont publiés sur le web à l’aide des technologies du web sémantique. Ces jeux de données contiennent des données qui représentent des liens vers des ressources similaires. Si ces jeux de données sont liés entre eux par des liens construits correctement, les utilisateurs peuvent facilement interroger des données à travers une interface uniforme, comme s’ils interrogeaient un jeu de données unique. Mais, trouver des liens corrects est très difficile car de nombreuses comparaisons doivent être effectuées. Plusieurs solutions ont été proposées pour résoudre ce problème : (1) l’approche la plus directe est de comparer les valeurs d’attributs d’instances pour identifier les liens, mais il est impossible de comparer toutes les paires possibles de valeurs d’attributs. (2) Une autre stratégie courante consiste à comparer les instances selon les attribut correspondants trouvés par l’alignement d’ontologies à base d’instances, qui permet de générer des correspondances d’attributs basés sur des instances. Cependant, il est difficile d’identifier des instances similaires à travers les ensembles de données car,dans certains cas, les valeurs des attributs en correspondance ne sont pas les mêmes.(3) Plusieurs méthodes utilisent la programmation génétique pour construire des modèles d’interconnexion afin de comparer différentes instances, mais elles souffrent de longues durées d’exécution.Dans cette thèse, une méthode d’interconnexion est proposée pour relier les instances similaires dans différents ensembles de données, basée à la fois sur l’apprentissage statistique et sur l’apprentissage symbolique. L’entrée est constituée de deux ensembles de données, des correspondances de classes sur les deux ensembles de données et un échantillon de liens “positif” ou “négatif” résultant d’une évaluation de l’utilisateur. La méthode construit un classifieur qui distingue les bons liens des liens incorrects dans deux ensembles de données RDF en utilisant l’ensemble des liens d’échantillons évalués. Le classifieur est composé de correspondances d’attributs entre les classes correspondantes et de deux ensembles de données,qui aident à comparer les instances et à établir les liens. Le classifieur est appelé motif d’interconnexion dans cette thèse. D’une part, notre méthode découvre des correspondances potentielles entre d’attributs pour chaque correspondance de classe via une méthode d’apprentissage statistique : l’algorithme de regroupement K-medoids,en utilisant des statistiques sur les valeurs des instances. D’autre part, notre solution s’appuie sur un modèle d’interconnexion par une méthode d’apprentissage symbolique: l’espace des versions, basée sur les correspondances d’attributs potentielles découvertes et l’ensemble des liens de l’échantillon évalué. Notre méthode peut résoudre la tâche d’interconnexion quand il n’existe pas de motif d’interconnexion combiné qui couvre tous les liens corrects évalués avec un format concis.L’expérimentation montre que notre méthode d’interconnexion, avec seulement1% des liens totaux dans l’échantillon, atteint une F-mesure élevée (de 0,94 à 0,99)
There are many data sets being published on the web with Semantic Web technology. The data sets usually contain analogous data which represent the similar resources in the world. If these data sets are linked together by correctly identifying the similar instances, users can conveniently query data through a uniform interface, as if they are connecting a single database. However, finding correct links is very challenging because web data sources usually have heterogeneous ontologies maintained by different organizations. Many existing solutions have been proposed for this problem. (1) One straight-forward idea is to compare the attribute values of instances for identifying links, yet it is impossible to compare all possible pairs of attribute values. (2) Another common strategy is to compare instances with correspondences found by instance-based ontology matching, which can generate attribute correspondences based on overlapping ranges between two attributes, while it is easy to cause incomparable attribute correspondences or undiscovered comparable attribute correspondences. (3) Many existing solutions leverage Genetic Programming to construct interlinking patterns for comparing instances, however the running times of the interlinking methods are usually long. In this thesis, an interlinking method is proposed to interlink instances for different data sets, based on both statistical learning and symbolic learning. On the one hand, the method discovers potential comparable attribute correspondences of each class correspondence via a K-medoids clustering algorithm with instance value statistics. We adopt K-medoids because of its high working efficiency and high tolerance on irregular data and even incorrect data. The K-medoids classifies attributes of each class into several groups according to their statistical value features. Groups from different classes are mapped when they have similar statistical value features, to determine potential comparable attribute correspondences. The clustering procedure effectively narrows the range of candidate attribute correspondences. On the other hand, our solution also leverages a symbolic learning method, called Version Space. Version Space is an iterative learning model that searches for the interlinking pattern from two directions. Our design can solve the interlinking task that does not have a single compatible conjunctive interlinking pattern that covers all assessed correct links with a concise format. The interlinking solution is evaluated with large-scale real-world data from IM@OAEI and CKAN. Experiments confirm that the solution with only 1% of sample links already reaches a high accuracy (up to 0.94-0.99 on F-measure). The F-measure quickly converges improving on other state-of-the-art approaches, by nearly 10 percent of their F-measure values
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Annane, Amina. "Using Background Knowledge to Enhance Biomedical Ontology Matching". Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS032/document.

Texto completo
Resumen
Les sciences de la vie produisent de grandes masses de données (par exemple, des essais cliniques et des articles scientifiques). L'intégration et l'analyse des différentes bases de données liées à la même question de recherche, par exemple la corrélation entre phénotypes et génotypes, sont essentielles pour découvrir de nouvelles connaissances. Pour cela, la communauté des sciences de la vie a adopté les techniques du Web sémantique pour réaliser l'intégration et l'interopérabilité des données, en particulier les ontologies. En effet, les ontologies représentent la brique de base pour représenter et partager la quantité croissante de données sur le Web. Elles fournissent un vocabulaire commun pour les humains, et des définitions d'entités formelles pour les machines.Un grand nombre d'ontologies et de terminologies biomédicales a été développé pour représenter et annoter les différentes bases de données existantes. Cependant, celles qui sont représentées avec différentes ontologies qui se chevauchent, c'est à dire qui ont des parties communes, ne sont pas interopérables. Il est donc crucial d'établir des correspondances entre les différentes ontologies utilisées, ce qui est un domaine de recherche actif connu sous le nom d'alignement d'ontologies.Les premières méthodes d'alignement d'ontologies exploitaient principalement le contenu lexical et structurel des ontologies à aligner. Ces méthodes sont moins efficaces lorsque les ontologies à aligner sont fortement hétérogènes lexicalement, c'est à dire lorsque des concepts équivalents sont décrits avec des labels différents. Pour pallier à ce problème, la communauté d'alignement d'ontologies s'est tournée vers l'utilisation de ressources de connaissance externes en tant que pont sémantique entre les ontologies à aligner. Cette approche soulève plusieurs nouvelles questions de recherche, notamment : (1) la sélection des ressources de connaissance à utiliser, (2) l'exploitation des ressources sélectionnées pour améliorer le résultat d'alignement. Plusieurs travaux de recherche ont traité ces problèmes conjointement ou séparément. Dans notre thèse, nous avons fait une revue systématique et une comparaison des méthodes proposées dans la littérature. Puis, nous nous sommes intéressés aux deux questions.Les ontologies, autres que celles à aligner, sont les ressources de connaissance externes (Background Knowledge : BK) les plus utilisées. Les travaux apparentés sélectionnent souvent un ensemble d'ontologies complètes en tant que BK même si, seuls des fragments des ontologies sélectionnées sont réellement efficaces pour découvrir de nouvelles correspondances. Nous proposons une nouvelle approche qui sélectionne et construit une ressource de connaissance à partir d'un ensemble d'ontologies. La ressource construite, d'une taille réduite, améliore, comme nous le démontrons, l'efficience et l'efficacité du processus d'alignement basé sur l'exploitation de BK.L'exploitation de BK dans l'alignement d'ontologies est une épée à double tranchant : bien qu'elle puisse augmenter le rappel (i.e., aider à trouver plus de correspondances correctes), elle peut réduire la précision (i.e., générer plus de correspondances incorrectes). Afin de faire face à ce problème, nous proposons deux méthodes pour sélectionner les correspondances les plus pertinentes parmi les candidates qui se basent sur : (1) un ensemble de règles et (2) l'apprentissage automatique supervisé. Nous avons expérimenté et évalué notre approche dans le domaine biomédical, grâce à la profusion de ressources de connaissances en biomédecine (ontologies, terminologies et alignements existants). Nous avons effectué des expériences intensives sur deux benchmarks de référence de la campagne d'évaluation de l'alignement d'ontologie (OAEI). Nos résultats confirment l'efficacité et l'efficience de notre approche et dépassent ou rivalisent avec les meilleurs résultats obtenus
Life sciences produce a huge amount of data (e.g., clinical trials, scientific articles) so that integrating and analyzing all the datasets related to a given research question like the correlation between phenotypes and genotypes, is a key element for knowledge discovery. The life sciences community adopted Semantic Web technologies to achieve data integration and interoperability, especially ontologies which are the key technology to represent and share the increasing amount of data on the Web. Indeed, ontologies provide a common domain vocabulary for humans, and formal entity definitions for machines.A large number of biomedical ontologies and terminologies has been developed to represent and annotate various datasets. However, datasets represented with different overlapping ontologies are not interoperable. It is therefore crucial to establish correspondences between the ontologies used; an active area of research known as ontology matching.Original ontology matching methods usually exploit the lexical and structural content of the ontologies to align. These methods are less effective when the ontologies to align are lexically heterogeneous i.e., when equivalent concepts are described with different labels. To overcome this issue, the ontology matching community has turned to the use of external knowledge resources as a semantic bridge between the ontologies to align. This approach arises several new issues mainly: (1) the selection of these background resources, (2) the exploitation of the selected resources to enhance the matching results. Several works have dealt with these issues jointly or separately. In our thesis, we made a systematic review and historical evaluation comparison of state-of-the-art approaches.Ontologies, others than the ones to align, are the most used background knowledge resources. Related works often select a set of complete ontologies as background knowledge, even if, only fragments of the selected ontologies are actually effective for discovering new mappings. We propose a novel BK-based ontology matching approach that selects and builds a knowledge resource with just the right concepts chosen from a set of ontologies. The conducted experiments showed that our BK selection approach improves efficiency without loss of effectiveness.Exploiting background knowledge resources in ontology matching is a double-edged sword: while it may increase recall (i.e., retrieve more correct mappings), it may lower precision (i.e., produce more incorrect mappings). We propose two methods to select the most relevant mappings from the candidate ones: (1) based on a set of rules and (2) with Supervised Machine Learning. We experiment and evaluate our approach in the biomedical domain, thanks to the profusion of knowledge resources in biomedicine (ontologies, terminologies and existing alignments).We evaluated our approach with extensive experiments on two Ontology Alignment Evaluation Initiative (OAEI) benchmarks. Our results confirm the effectiveness and efficiency of our approach and overcome or compete with state-of-the-art matchers exploiting background knowledge resources
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Tounsi, Dhouib Molka. "Ingénierie des connaissances dans le domaine du sourcing pour la recommandation de prestataires". Thesis, Université Côte d'Azur, 2021. http://www.theses.fr/2021COAZ4024.

Texto completo
Resumen
Cette thèse de doctorat CIFRE s'inscrit dans le cadre d'un projet de recherche collaboratif entre le laboratoire I3S de l'Université Côte d'Azur et la société Silex et aborde le domaine des systèmes de recommandation. Silex est une start-up qui développe un outil de sourcing Software-as-a-Service permettant aux entreprises de fournir une description de leurs activités professionnelles, de leurs offres et/ou des services qu'elles recherchent en langue naturelle (actuellement le français).Dans ce contexte, l'objectif de cette thèse est de proposer un système d'aide à la décision en exploitant les connaissances sémantiques extraites à partir des descriptions textuelles des demandes de prestation et des prestataires, afin de recommander des prestataires pertinents pour une demande de prestation.Les contributions de cette thèse sont les suivantes. Premièrement, nous avons proposé un vocabulaire pour le domaine du sourcing en réutilisant et en intégrant des vocabulaires existants, afin d'annoter sémantiquement les descriptions textuelles des prestataires et des demandes de prestation. Deuxièmement, nous avons proposé une méthode d’alignement automatique afin d'établir la correspondance entre différents concepts des vocabulaires considérés. Cette approche se base sur des règles exploitant l'espace des plongements lexicaux et des mesures sur des groupes d'étiquettes pour découvrir les relations entre concepts. Troisièmement, nous avons proposé un algorithme d'extraction des entités nommées à partir des descriptions textuelles des demandes de prestation et des prestataires et un algorithme d'annotation sémantique de ces descriptions, basé sur le liage des entités extraites avec les concepts du vocabulaire défini.Quatrièmement, nous avons proposé un algorithme de recommandation de prestataires qui exploite ces annotations sémantiques.Finalement, nous avons étudié l'apport de l'utilisation de connaissances ontologiques afin d'améliorer notre système d'aide à décision pour le domaine du sourcing
This CIFRE doctoral thesis is part of a collaborative research project between the I3S laboratory of the University of Côte d'Azur and the Silex company, and addresses the field of recommendation systems. Silex is a start-up that develops a Software-as-a-Service sourcing tool that allows companies to provide a description of their professional activities, their offers and/or the services they are looking for in natural language (currently French).In this context, the objective of this thesis is to propose a decision support system by exploiting the semantic knowledge that are extracted from the textual descriptions of requests for services and providers, in order to recommend relevant providers for a service request.The contributions of this thesis are the following. First, we proposed a vocabulary for the sourcing field by reusing and integrating existing vocabularies, in order to semantically annotate the textual descriptions of providers and requests for services. Second, we proposed an automatic alignment method to establish the correspondence between different concepts of the considered vocabularies. This approach is based on rules exploiting embedding space and measurements on groups of labels to discover the relationships between concepts. Third, we proposed an algorithm for extracting named entities from the textual descriptions of service requests and providers, and an algorithm for semantic annotation of these descriptions, based on the linking of the extracted entities with the concepts of the defined vocabulary.Fourth, we proposed a provider recommendation algorithm that exploits these knowledges extracted.Finally, we studied the contribution of using ontological knowledge to improve our decision support system for the sourcing domain in order to recommend relevant providers for a service request.The contributions of this thesis are the following. First, we proposed a vocabulary for the sourcing field in order to semantically annotate the textual descriptions of providers and requests for services. This vocabulary was built by reusing and integrating existing vocabularies. Second, we proposed an automatic alignment method to establish the correspondence between different concepts of the considered vocabularies. This approach is based on rules exploiting embedding space and measurements on groups of labels to discover the relationships between concepts. Third, we proposed an algorithm for extracting named entities from the textual descriptions of service requests and providers, and an algorithm for semantic annotation of these descriptions, based on the linking of the extracted entities with the concepts of the defined vocabulary.Fourth, we proposed a provider recommendation algorithm that exploits these knowledge extracted.Finally, we studied the contribution of using ontological knowledge to improve our decision support system for the sourcing domain
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Hamdi, Fayçal. "Améliorer l'interopérabilité sémantique : applicabilité et utilité de l'alignement d'ontologies". Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00662523.

Texto completo
Resumen
Dans cette thèse, nous présentons des approches d'adaptation d'un processus d'alignement aux caractéristiques des ontologies alignées, qu'il s'agisse de caractéristiques quantitatives telles que leur volume ou de caractéristiques particulières liées par exemple à la façon dont les labels des concepts sont construits. Concernant les caractéristiques quantitatives, nous proposons deux méthodes de partitionnement d'ontologies qui permettent l'alignement des ontologies très volumineuses. Ces deux méthodes génèrent, en entrée du processus d'alignement, des sous ensembles de taille raisonnable des deux ontologies à aligner en prenant en compte dès le départ l'objectif d'alignement dans le processus de partitionnement.Concernant les caractéristiques particulières des ontologies alignées, nous présentons l'environnement TaxoMap Framework qui permet la spécification de traitements de raffinement à partir de primitives prédéfinies. Nous proposons un langage de patrons MPL (the Mapping Pattern Language) que nous utilisons pour spécifier les traitements de raffinement.En plus des approches d'adaptation aux caractéristiques des ontologies alignées, nous présentons des approches de réutilisation des résultats d'alignement pour l'ingénierie ontologique. Nous nous focalisons plus particulièrement sur l'utilisation de l'alignement pour l'enrichissement d'ontologies. Nous étudions l'apport des techniques d'alignement pour l'enrichissement et l'impact des caractéristiques de la ressource externe utilisée comme source d'enrichissement. Enfin, nous présentons la façon dont l'environnement TaxoMap Framework a été implémenté et les expérimentations réalisées : des tests sur le module d'alignement TaxoMap, sur l'approche de raffinement de mappings, sur les méthodes de partitionnement d'ontologies de très grande taille et sur l'approche d'enrichissement d'ontologies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Ngo, Duy Hoa. "Enhancing Ontology Matching by Using Machine Learning, Graph Matching and Information Retrieval Techniques". Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20096/document.

Texto completo
Resumen
Ces dernières années, les ontologies ont suscité de nombreux travaux dans le domaine du web sémantique. Elles sont utilisées pour fournir le vocabulaire sémantique permettant de rendre la connaissance du domaine disponible pour l'échange et l'interprétation au travers des systèmes d'information. Toutefois, en raison de la nature décentralisée du web sémantique, les ontologies sont très hétérogènes. Cette hétérogénéité provoque le problème de la variation de sens ou ambiguïté dans l'interprétation des entités et, par conséquent, elle empêche le partage des connaissances du domaine. L'alignement d'ontologies, qui a pour but la découverte des correspondances sémantiques entre des ontologies, devient une tâche cruciale pour résoudre ce problème d'hétérogénéité dans les applications du web sémantique. Les principaux défis dans le domaine de l'alignement d'ontologies ont été décrits dans des études récentes. Parmi eux, la sélection de mesures de similarité appropriées ainsi que le réglage de la configuration de leur combinaison sont connus pour être des problèmes fondamentaux que la communauté doit traiter. En outre, la vérification de la cohérence sémantique des correspondances est connue pour être une tâche importante. Par ailleurs, la difficulté du problème augmente avec la taille des ontologies. Pour faire face à ces défis, nous proposons dans cette thèse une nouvelle approche, qui combine différentes techniques issues des domaines de l'apprentissage automatique, d'appariement de graphes et de recherche d'information en vue d'améliorer la qualité de l'alignement d'ontologies. En effet, nous utilisons des techniques de recherche d'information pour concevoir de nouvelles mesures de similarité efficaces afin de comparer les étiquettes et les profils d'entités de contexte au niveau des entités. Nous appliquons également une méthode d'appariement de graphes appelée propagation de similarité au niveau de la structure qui découvre effectivement des correspondances en exploitant des informations structurelles des entités. Pour combiner les mesures de similarité au niveau des entités, nous transformons la tâche de l'alignement d'ontologie en une tâche de classification de l'apprentissage automatique. Par ailleurs, nous proposons une méthode dynamique de la somme pondérée pour combiner automatiquement les correspondances obtenues au niveau des entités et celles obtenues au niveau de la structure. Afin d'écarter les correspondances incohérentes, nous avons conçu une nouvelle méthode de filtrage sémantique. Enfin, pour traiter le problème de l'alignement d'ontologies à large échelle, nous proposons deux méthodes de sélection des candidats pour réduire l'espace de calcul.Toutes ces contributions ont été mises en œuvre dans un prototype nommé YAM++. Pour évaluer notre approche, nous avons utilisé des données du banc d'essai de la compétition OAEI : Benchmark, Conference, Multifarm, Anatomy, Library and Large Biomedical Ontologies. Les résultats expérimentaux montrent que les méthodes proposées sont très efficaces. De plus, en comparaison avec les autres participants à la compétition OAEI, YAM++ a montré sa compétitivité et a acquis une position de haut rang
In recent years, ontologies have attracted a lot of attention in the Computer Science community, especially in the Semantic Web field. They serve as explicit conceptual knowledge models and provide the semantic vocabularies that make domain knowledge available for exchange and interpretation among information systems. However, due to the decentralized nature of the semantic web, ontologies are highlyheterogeneous. This heterogeneity mainly causes the problem of variation in meaning or ambiguity in entity interpretation and, consequently, it prevents domain knowledge sharing. Therefore, ontology matching, which discovers correspondences between semantically related entities of ontologies, becomes a crucial task in semantic web applications.Several challenges to the field of ontology matching have been outlined in recent research. Among them, selection of the appropriate similarity measures as well as configuration tuning of their combination are known as fundamental issues that the community should deal with. In addition, verifying the semantic coherent of the discovered alignment is also known as a crucial task. Furthermore, the difficulty of the problem grows with the size of the ontologies. To deal with these challenges, in this thesis, we propose a novel matching approach, which combines different techniques coming from the fields of machine learning, graph matching and information retrieval in order to enhance the ontology matching quality. Indeed, we make use of information retrieval techniques to design new effective similarity measures for comparing labels and context profiles of entities at element level. We also apply a graph matching method named similarity propagation at structure level that effectively discovers mappings by exploring structural information of entities in the input ontologies. In terms of combination similarity measures at element level, we transform the ontology matching task into a classification task in machine learning. Besides, we propose a dynamic weighted sum method to automatically combine the matching results obtained from the element and structure level matchers. In order to remove inconsistent mappings, we design a new fast semantic filtering method. Finally, to deal with large scale ontology matching task, we propose two candidate selection methods to reduce computational space.All these contributions have been implemented in a prototype named YAM++. To evaluate our approach, we adopt various tracks namely Benchmark, Conference, Multifarm, Anatomy, Library and Large BiomedicalOntologies from the OAEI campaign. The experimental results show that the proposed matching methods work effectively. Moreover, in comparison to other participants in OAEI campaigns, YAM++ showed to be highly competitive and gained a high ranking position
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Laadhar, Amir. "Local matching learning of large scale biomedical ontologies". Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30126.

Texto completo
Resumen
Les larges ontologies biomédicales décrivent généralement le même domaine d'intérêt, mais en utilisant des modèles de modélisation et des vocabulaires différents. Aligner ces ontologies qui sont complexes et hétérogènes est une tâche fastidieuse. Les systèmes de matching doivent fournir des résultats de haute qualité en tenant compte de la grande taille de ces ressources. Les systèmes de matching d'ontologies doivent résoudre deux problèmes: (i) intégrer la grande taille d'ontologies, (ii) automatiser le processus d'alignement. Le matching d'ontologies est une tâche difficile en raison de la large taille des ontologies. Les systèmes de matching d'ontologies combinent différents types de matcher pour résoudre ces problèmes. Les principaux problèmes de l'alignement de larges ontologies biomédicales sont: l'hétérogénéité conceptuelle, l'espace de recherche élevé et la qualité réduite des alignements résultants. Les systèmes d'alignement d'ontologies combinent différents matchers afin de réduire l'hétérogénéité. Cette combinaison devrait définir le choix des matchers à combiner et le poids. Différents matchers traitent différents types d'hétérogénéité. Par conséquent, le paramétrage d'un matcher devrait être automatisé par les systèmes d'alignement d'ontologies afin d'obtenir une bonne qualité de correspondance. Nous avons proposé une approche appele "local matching learning" pour faire face à la fois à la grande taille des ontologies et au problème de l'automatisation. Nous divisons un gros problème d'alignement en un ensemble de problèmes d'alignement locaux plus petits. Chaque problème d'alignement local est indépendamment aligné par une approche d'apprentissage automatique. Nous réduisons l'énorme espace de recherche en un ensemble de taches de recherche de corresondances locales plus petites. Nous pouvons aligner efficacement chaque tache de recherche de corresondances locale pour obtenir une meilleure qualité de correspondance. Notre approche de partitionnement se base sur une nouvelle stratégie à découpes multiples générant des partitions non volumineuses et non isolées. Par conséquence, nous pouvons surmonter le problème de l'hétérogénéité conceptuelle. Le nouvel algorithme de partitionnement est basé sur le clustering hiérarchique par agglomération (CHA). Cette approche génère un ensemble de tâches de correspondance locale avec un taux de couverture suffisant avec aucune partition isolée. Chaque tâche d'alignement local est automatiquement alignée en se basant sur les techniques d'apprentissage automatique. Un classificateur local aligne une seule tâche d'alignement local. Les classificateurs locaux sont basés sur des features élémentaires et structurelles. L'attribut class de chaque set de donne d'apprentissage " training set" est automatiquement étiqueté à l'aide d'une base de connaissances externe. Nous avons appliqué une technique de sélection de features pour chaque classificateur local afin de sélectionner les matchers appropriés pour chaque tâche d'alignement local. Cette approche réduit la complexité d'alignement et augmente la précision globale par rapport aux méthodes d'apprentissage traditionnelles. Nous avons prouvé que l'approche de partitionnement est meilleure que les approches actuelles en terme de précision, de taux de couverture et d'absence de partitions isolées. Nous avons évalué l'approche d'apprentissage d'alignement local à l'aide de diverses expériences basées sur des jeux de données d'OAEI 2018. Nous avons déduit qu'il est avantageux de diviser une grande tâche d'alignement d'ontologies en un ensemble de tâches d'alignement locaux. L'espace de recherche est réduit, ce qui réduit le nombre de faux négatifs et de faux positifs. L'application de techniques de sélection de caractéristiques à chaque classificateur local augmente la valeur de rappel pour chaque tâche d'alignement local
Although a considerable body of research work has addressed the problem of ontology matching, few studies have tackled the large ontologies used in the biomedical domain. We introduce a fully automated local matching learning approach that breaks down a large ontology matching task into a set of independent local sub-matching tasks. This approach integrates a novel partitioning algorithm as well as a set of matching learning techniques. The partitioning method is based on hierarchical clustering and does not generate isolated partitions. The matching learning approach employs different techniques: (i) local matching tasks are independently and automatically aligned using their local classifiers, which are based on local training sets built from element level and structure level features, (ii) resampling techniques are used to balance each local training set, and (iii) feature selection techniques are used to automatically select the appropriate tuning parameters for each local matching context. Our local matching learning approach generates a set of combined alignments from each local matching task, and experiments show that a multiple local classifier approach outperforms conventional, state-of-the-art approaches: these use a single classifier for the whole ontology matching task. In addition, focusing on context-aware local training sets based on local feature selection and resampling techniques significantly enhances the obtained results
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Idoudi, Rihab. "Fouille de connaissances en diagnostic mammographique par ontologie et règles d'association". Thesis, Ecole nationale supérieure Mines-Télécom Atlantique Bretagne Pays de la Loire, 2017. http://www.theses.fr/2017IMTA0005/document.

Texto completo
Resumen
Face à la complexité significative du domaine mammographique ainsi que l'évolution massive de ses données, le besoin de contextualiser les connaissances au sein d'une modélisation formelle et exhaustive devient de plus en plus impératif pour les experts. C'est dans ce cadre que s'inscrivent nos travaux de recherche qui s'intéressent à unifier différentes sources de connaissances liées au domaine au sein d'une modélisation ontologique cible. D'une part, plusieurs modélisations ontologiques mammographiques ont été proposées dans la littérature, où chaque ressource présente une perspective distincte du domaine d'intérêt. D'autre part, l'implémentation des systèmes d'acquisition des mammographies rend disponible un grand volume d'informations issues des faits passés, dont la réutilisation devient un enjeu majeur. Toutefois, ces fragments de connaissances, présentant de différentes évidences utiles à la compréhension de domaine, ne sont pas interopérables et nécessitent des méthodologies de gestion de connaissances afin de les unifier. C'est dans ce cadre que se situe notre travail de thèse qui s'intéresse à l'enrichissement d'une ontologie de domaine existante à travers l'extraction et la gestion de nouvelles connaissances (concepts et relations) provenant de deux courants scientifiques à savoir: des ressources ontologiques et des bases de données comportant des expériences passées. Notre approche présente un processus de couplage entre l'enrichissement conceptuel et l'enrichissement relationnel d'une ontologie mammographique existante. Le premier volet comporte trois étapes. La première étape dite de pré-alignement d'ontologies consiste à construire pour chaque ontologie en entrée une hiérarchie des clusters conceptuels flous. Le but étant de réduire l'étape d'alignement de deux ontologies entières en un alignement de deux groupements de concepts de tailles réduits. La deuxième étape consiste à aligner les deux structures des clusters relatives aux ontologies cible et source. Les alignements validés permettent d'enrichir l'ontologie de référence par de nouveaux concepts permettant d'augmenter le niveau de granularité de la base de connaissances. Le deuxième processus s'intéresse à l'enrichissement relationnel de l'ontologie mammographique cible par des relations déduites de la base de données de domaine. Cette dernière comporte des données textuelles des mammographies recueillies dans les services de radiologies. Ce volet comporte ces étapes : i) Le prétraitement des données textuelles ii) l'application de techniques relatives à la fouille de données (ou extraction de connaissances) afin d'extraire des expériences de nouvelles associations sous la forme de règles, iii) Le post-traitement des règles générées. Cette dernière consiste à filtrer et classer les règles afin de faciliter leur interprétation et validation par l'expert vi) L'enrichissement de l'ontologie par de nouvelles associations entre les concepts. Cette approche a été mise en 'uvre et validée sur des ontologies mammographiques réelles et des données des patients fournies par les hôpitaux Taher Sfar et Ben Arous
Facing the significant complexity of the mammography area and the massive changes in its data, the need to contextualize knowledge in a formal and comprehensive modeling is becoming increasingly urgent for experts. It is within this framework that our thesis work focuses on unifying different sources of knowledge related to the domain within a target ontological modeling. On the one hand, there is, nowadays, several mammographic ontological modeling, where each resource has a distinct perspective area of interest. On the other hand, the implementation of mammography acquisition systems makes available a large volume of information providing a decisive competitive knowledge. However, these fragments of knowledge are not interoperable and they require knowledge management methodologies for being comprehensive. In this context, we are interested on the enrichment of an existing domain ontology through the extraction and the management of new knowledge (concepts and relations) derived from two scientific currents: ontological resources and databases holding with past experiences. Our approach integrates two knowledge mining levels: The first module is the conceptual target mammographic ontology enrichment with new concepts extracting from source ontologies. This step includes three main stages: First, the stage of pre-alignment. The latter consists on building for each input ontology a hierarchy of fuzzy conceptual clusters. The goal is to reduce the alignment task from two full ontologies to two reduced conceptual clusters. The second stage consists on aligning the two hierarchical structures of both source and target ontologies. Thirdly, the validated alignments are used to enrich the reference ontology with new concepts in order to increase the granularity of the knowledge base. The second level of management is interested in the target mammographic ontology relational enrichment by novel relations deducted from domain database. The latter includes medical records of mammograms collected from radiology services. This section includes four main steps: i) the preprocessing of textual data ii) the application of techniques for data mining (or knowledge extraction) to extract new associations from past experience in the form of rules, iii) the post-processing of the generated rules. The latter is to filter and classify the rules in order to facilitate their interpretation and validation by expert, vi) The enrichment of the ontology by new associations between concepts. This approach has been implemented and validated on real mammographic ontologies and patient data provided by Taher Sfar and Ben Arous hospitals. The research work presented in this manuscript relates to knowledge using and merging from heterogeneous sources in order to improve the knowledge management process
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Inants, Armen. "Qualitative calculi with heterogeneous universes". Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAMO10/document.

Texto completo
Resumen
Représentation et raisonnement qualitatifs fonctionnent avec des relations non-numériques entre les objets d'un univers. Les formalismes généraux développés dans ce domaine sont basés sur différents types d'algèbres de relations, comme les algèbres de Tarski. Tous ces formalismes, qui sont appelés des calculs qualitatifs, partagent l'hypothèse implicite que l'univers est homogène, c'est-à-dire qu'il se compose d'objets de même nature. Toutefois, les objets de différents types peuvent aussi entretenir des relations. L'état de l'art du raisonnement qualitatif ne permet pas de combiner les calculs qualitatifs pour les différents types d'objets en un seul calcul.De nombreuses applications discriminent entre différents types d'objets. Par exemple, certains modèles spatiaux discriminent entre les régions, les lignes et les points, et différentes relations sont utilisées pour chaque type d'objets. Dans l'alignement d'ontologies, les calculs qualitatifs sont utiles pour exprimer des alignements entre un seul type d'entités, telles que des concepts ou des individus. Cependant, les relations entre les individus et les concepts, qui imposent des contraintes supplémentaires, ne sont pas exploitées.Cette thèse introduit la modularité dans les calculs qualitatifs et fournit une méthodologie pour la modélisation de calculs qualitatifs des univers hétérogènes. Notre contribution principale est un cadre basé sur une classe spéciale de schémas de partition que nous appelons modulaires. Pour un calcul qualitatif engendré par un schéma de partition modulaire, nous définissons une structure qui associe chaque symbole de relation avec un domaine et codomain abstrait à partir d'un treillis booléen de sortes. Un module d'un tel calcul qualitatif est un sous-calcul limité à une sorte donnée, qui est obtenu par une opération appelée relativisation à une sorte. D'un intérêt pratique plus grand est l'opération inverse, qui permet de combiner plusieurs calculs qualitatifs en un seul calcul. Nous définissons une opération appelée combinaison modulo liaison, qui combine deux ou plusieurs calculs qualitatifs sur différents univers, en fonction de quelques relations de liaison entre ces univers. Le cadre est suffisamment général pour soutenir la plupart des calculs spatio-temporels qualitatifs connus
Qualitative representation and reasoning operate with non-numerical relations holding between objects of some universe. The general formalisms developed in this field are based on various kinds of algebras of relations, such as Tarskian relation algebras. All these formalisms, which are called qualitative calculi, share an implicit assumption that the universe is homogeneous, i.e., consists of objects of the same kind. However, objects of different kinds may also entertain relations. The state of the art of qualitative reasoning does not offer a combination operation of qualitative calculi for different kinds of objects into a single calculus.Many applications discriminate between different kinds of objects. For example, some spatial models discriminate between regions, lines and points, and different relations are used for each kind of objects. In ontology matching, qualitative calculi were shown useful for expressing alignments between only one kind of entities, such as concepts or individuals. However, relations between individuals and concepts, which impose additional constraints, are not exploited.This dissertation introduces modularity in qualitative calculi and provides a methodology for modeling qualitative calculi with heterogeneous universes. Our central contribution is a framework based on a special class of partition schemes which we call modular. For a qualitative calculus generated by a modular partition scheme, we define a structure that associates each relation symbol with an abstract domain and codomain from a Boolean lattice of sorts. A module of such a qualitative calculus is a sub-calculus restricted to a given sort, which is obtained through an operation called relativization to a sort. Of a greater practical interest is the opposite operation, which allows for combining several qualitative calculi into a single calculus. We define an operation called combination modulo glue, which combines two or more qualitative calculi over different universes, provided some glue relations between these universes. The framework is general enough to support most known qualitative spatio-temporal calculi
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Elbyed, Abdeltif. "ROMIE, une approche d'alignement d'ontologies à base d'instances". Phd thesis, Institut National des Télécommunications, 2009. http://tel.archives-ouvertes.fr/tel-00541874.

Texto completo
Resumen
L'interoperabilite semantique est une question importante, largement identifiee dans les technologies d'organisation et de l'information et dans la communaute de recherche en systemes d'information. L'adoption large du Web afin d'acceder a des informations distribuees necessite l'interoperabilite des systemes qui gerent ces informations. Des solutions et reflexions comme le Web Semantique facilitent la localisation et l'integration des donnees d'une maniere plus intelligente par l'intermediaire des ontologies. Il offre une vision plus semantique et comprehensible du web. Pourtant, il souleve un certain nombre de defis de recherche. Un des principaux defis est de comparer et aligner les differentes ontologies qui apparaissent dans des taches d'integration. Le principal objectif de cette these est de proposer une approche d'alignement pour identifier les liens de correspondance entre des ontologies. Notre approche combine les techniques et les methodes d'appariement linguistiques, syntaxiques, structurelles ou encore semantiques (basees sur les instances). Elle se compose de deux phases principales : la phase d'enrichissement semantique des ontologies a comparer et la phase d'alignement ou de mapping. La phase d'enrichissement est basee sur l'analyse des informations que les ontologies developpent (des ressources web, des donnees, des documents, etc.) et qui sont associes aux concepts de l'ontologie. Notre intuition est que ces informations ainsi que les relations qui peuvent exister entre elles participent a l'enrichissement semantique entre les concepts. A l'issue de la phase d'enrichissement, une ontologie contient plus de relations semantiques entre les concepts qui seront exploitees dans la deuxieme phase. La phase de mapping prend deux ontologies enrichies et calcule la similarite entre les couples de concepts. Un processus de filtrage nous permet de reduire automatiquement le nombre de fausses relations. La validation des correspondances est un processus interactif direct (avec un expert) ou indirect (en mesurant le degre de satisfaction de l'utilisateur). Notre approche a donne lieu a un systeme de mapping appele ROMIE (Resource based Ontology Mapping within an Interactive and Extensible environment). Il a ete experimente et evalue dans deux differentes applications : une application biomedicale et une application dans le domaine de l'apprentissage enrichi par les technologies (ou e-learning).
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Koutraki, Maria. "Approches vers des modèles unifiés pour l'intégration de bases de connaissances". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLV082/document.

Texto completo
Resumen
Ma thèse a comme but l’intégration automatique de nouveaux services Web dans une base de connaissances. Pour chaque méthode d’un service Web, une vue est calculée de manière automatique. La vue est représentée comme une requête sur la base de connaissances. L’algorithme que nous avons proposé calcule également une fonction de transformation XSLT associée à la méthode qui est capable de transformer les résultats d’appel dans un fragment conforme au schéma de la base de connaissances. La nouveauté de notre approche c’est que l’alignement repose seulement sur l’alignement des instances. Il ne dépend pas des noms des concepts ni des contraintes qui sont définis par le schéma. Ceci le fait particulièrement pertinent pour les services Web qui sont publiés actuellement sur le Web, parce que ces services utilisent le protocole REST. Ce protocole ne permet pas la publication de schémas. En plus, JSON semble s’imposer comme le standard pour la représentation des résultats d’appels de services. À différence du langage XML, JSON n’utilise pas de noeuds nommés. Donc les algorithmes d’alignement traditionnels sont privés de noms de concepts sur lesquels ils se basent
My thesis aim the automatic integration of new Web services in a knowledge base. For each method of a Web service, a view is automatically calculated. The view is represented as a query on the knowledge base. Our algorithm also calculates an XSLT transformation function associated to the method that is able to transform the call results in a fragment according to the schema of the knowledge base. The novelty of our approach is that the alignment is based only on the instances. It does not depend on the names of the concepts or constraints that are defined by the schema. This makes it particularly relevant for Web services that are currently available on the Web, because these services use the REST protocol. This protocol does not allow the publication schemes. In addition, JSON seems to establish itself as the standard for the representation of technology call results
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Tournaire, Rémi. "Découverte automatique de correspondances entre ontologies". Grenoble, 2010. http://www.theses.fr/2010GRENM072.

Texto completo
Resumen
Dans cette thèse, nous adoptons une approche formelle pour définir et découvrir des mappings d'inclusion probabilistes entre deux taxonomies avec une sémantique claire, dans l'optique d'échange collaboratif de documents. Nous comparons deux façons de modéliser des mappings probabilistes tout en étant compatible avec les contraintes logiques déclarées dans chaque taxonomie selon une propriété de monotonie, puis nous montrons que ces modèles sont complémentaires pour distinguer les mappings pertinents. Nous fournissons un moyen d'estimer les probabilités d'un mapping par une technique bayésienne basée sur les statistiques des extensions des classes impliquées dans le mapping. Si les ensembles d'instances sont disjoints, on utilise des classifieurs pour les fusionner. Nous présentons ensuite un algorithme de type "générer et tester" qui utilise les deux modèles de mappings pour découvrir les plus probables entre deux taxonomies. Nous menons une analyse expérimentale fouillée de ProbaMap. Nous présentons un générateur de données synthétiques qui produit une entrée contrôlée pour une analyse quantitative et qualitative sur un large spectre de situations. Nous présentons aussi deux séries de résultats d'expériences sur des données réelles : l'alignement du jeu de donnée "Directory" d'OAEI, et une comparaison pour l'alignement de Web Directories sur lesquels ProbaMap obtient de meilleurs résultats que SBI (IJCAI 2003). Les perspectives pour ces travaux consistent à concevoir un système de réponse à des requêtes probabilistes en réutilisant des mappings probabilites, et la conversion des coefficients retournés par les méthodes de matching existantes en probabilités
In this thesis, we investigate a principled approach for defining and discovering probabilistic inclusion mappings between two taxonomies, with a clear semantic, in a purpose of collaborative exchange of documents. Firstly, we compare two ways of modeling probabilistic mappings which are compatible with the logical constraints declared in each taxonomy according to a monotony property, then we show that they are complementary for distinguishing relevant mappings. We provide a way to estimate the probabilities associated to a mapping by a Bayesian estimation technique based on classes extensions involved in the mapping, and using classifiers in order to merge the instances of both taxonomies when they are disjoint. Then we describe a generate and test algorithm called ProbaMap which minimizes the number of calls to the probability estimator for determining those mappings whose probability exceeds a chosen threshold. A thorough experimental analysis of ProbaMap is conducted. We introduce a generator that produce controlled data that allows to analyse the quality and the complexity of ProbaMap in a large and generic panel of situations. We present also two series of results for experiments conducted on real-world data: an alignment of the Directory dataset of the Ontology Alignment Evaluation Initiative (OAEI), and a comparative experiment on Web directories, on which ProbaMap outperforms the state-of-the-art contribution SBI (IJCAI'03). The perspectives of this work are the reuse of probabilistic mappings for a probabilistic query answering setting and a way to convert similarities coefficients of existing matching methods into probabilities
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Thiéblin, Elodie. "Génération automatique d'alignements complexes d'ontologies". Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30135.

Texto completo
Resumen
Le web de données liées (LOD) est composé de nombreux entrepôts de données. Ces données sont décrites par différents vocabulaires (ou ontologies). Chaque ontologie a une terminologie et une modélisation propre ce qui les rend hétérogènes. Pour lier et rendre les données du web de données liées interopérables, les alignements d'ontologies établissent des correspondances entre les entités desdites ontologies. Il existe de nombreux systèmes d'alignement qui génèrent des correspondances simples, i.e., ils lient une entité à une autre entité. Toutefois, pour surmonter l'hétérogénéité des ontologies, des correspondances plus expressives sont parfois nécessaires. Trouver ce genre de correspondances est un travail fastidieux qu'il convient d'automatiser. Dans le cadre de cette thèse, une approche d'alignement complexe basée sur des besoins utilisateurs et des instances communes est proposée. Le domaine des alignements complexes est relativement récent et peu de travaux adressent la problématique de leur évaluation. Pour pallier ce manque, un système d'évaluation automatique basé sur de la comparaison d'instances est proposé. Ce système est complété par un jeu de données artificiel sur le domaine des conférences
The Linked Open Data (LOD) cloud is composed of data repositories. The data in the repositories are described by vocabularies also called ontologies. Each ontology has its own terminology and model. This leads to heterogeneity between them. To make the ontologies and the data they describe interoperable, ontology alignments establish correspondences, or links between their entities. There are many ontology matching systems which generate simple alignments, i.e., they link an entity to another. However, to overcome the ontology heterogeneity, more expressive correspondences are sometimes needed. Finding this kind of correspondence is a fastidious task that can be automated. In this thesis, an automatic complex matching approach based on a user's knowledge needs and common instances is proposed. The complex alignment field is still growing and little work address the evaluation of such alignments. To palliate this lack, we propose an automatic complex alignment evaluation system. This system is based on instances. A famous alignment evaluation dataset has been extended for this evaluation
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Korenchuk, Yuliya. "Méthode d'enrichissement et d'élargissement d'une ontologie à partir de corpus de spécialité multilingues". Thesis, Strasbourg, 2017. http://www.theses.fr/2017STRAC014/document.

Texto completo
Resumen
Cette thèse propose une méthode pour alimenter une ontologie, une structure de concepts liés par des relations sémantiques, par des termes français, anglais et allemands à partir de corpus spécialisés comparables. Son apport principal est le développement des méthodes d'extraction utilisant des ressources endogènes apprises à partir de corpus et d'ontologie. Exploitant des n-grammes de caractères, elles sont disponibles et indépendantes vis-à-vis de la langue et du domaine. La première contribution porte sur l'utilisation des ressources morphologiques et morphosyntaxiques endogènes pour extraire des termes mono- et polylexicaux à partir de corpus. La deuxième contribution vise à exploiter des ressources endogènes pour identifier leurs traductions. La troisième contribution concerne la construction des familles morphologiques endogènes servant à alimenter l'ontologie
This thesis proposes a method of enrichment and population of an ontology, a structure of concepts linked by semantic relations, by terms in French, English and German from comparable domain-specific corpora. Our main contribution is the development of extraction methods based on endogenous resources, learned from the corpus and the ontology being analyzed. Using caracter n-grams, these resources are available and independent of a particular language or domain. The first contribution concerns the use of endogenous morphological and morphosyntactic resources for mono- and polylexical terms extraction from the corpus. The second contribution aims to use endogenous resources to identify translations for these terms. The third contribution concerns the construction of endogenous morphological families designed to enrich and populate the ontology
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Bach, thanh Lê. "Construction d'un Web sémantique multi-points de vue". Phd thesis, École Nationale Supérieure des Mines de Paris, 2006. http://pastel.archives-ouvertes.fr/pastel-00001989.

Texto completo
Resumen
Dans cette thèse, nous étudions les problèmes de l'hétérogénéité et du consensus dans un Web sémantique d'entreprise. Dans le Web sémantique, une extension du Web actuel, la sémantique des ressources est rendue explicite pour que les machines et les agents puissent les « comprendre » et les traiter automatiquement, afin de faciliter les tâches des utilisateurs finaux. Un Web sémantique d'entreprise est un tel web sémantique dédié à une entreprise, une organisation. L'objectif de cette thèse est de permettre la construction et l'exploitation d'un tel Web sémantique, dans une organisation hétérogène comportant différentes sources de connaissances et différentes catégories d'utilisateurs, sans éliminer l'hétérogénéité mais en faisant cohabiter entre l'hétérogénéité et le consensus dans l'organisation tout entière. Dans la première partie, nous approfondissons le problème de l'hétérogénéité des ontologies. L'ontologie est un des éléments fondamentaux dans le Web sémantique. Plusieurs ontologies différentes peuvent co-exister dans une organisation hétérogène. Pour faciliter l'échange des informations et des connaissances encodées dans différentes ontologies, nous étudions des algorithmes permettant d'aligner des ontologies déjà existantes. Les algorithmes proposés permettent de mettre en correspondance les ontologies représentées dans les langages RDF(S) et OWL recommandés par le W3C pour le Web sémantique. Ces algorithmes sont évalués grâce à des campagnes d'évaluation des outils d'alignement d'ontologies. Dans la deuxième partie, nous nous intéressons au problème de la construction de nouvelles ontologies dans une organisation hétérogène mais en prenant en compte différents points de vue, différentes terminologies des personnes, des groupes voire des communautés diverses au sein de cette organisation. Une telle ontologie, appelée ontologie multi-points de vue, permet de faire cohabiter à la fois l'hétérogénéité et le consensus dans une organisation hétérogène. Nous proposons un modèle de représentation des connaissances multi-points de vue, appelé MVP, et un langage d'ontologie multi-points de vue, qui est une extension du langage d'ontologie OWL, appelé MVP-OWL, pour permettre de construire et d'exploiter des ontologies multi-points de vue dans un Web sémantique d'entreprise.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Abou, Assali Amjad. "Acquisition des connaissances d'adaptation et traitement de l'hétérogénéité dans un système de RàPC basé sur une ontologie". Compiègne, 2010. http://www.theses.fr/2010COMP1876.

Texto completo
Resumen
Ce mémoire porte sur la conception d'un système de raisonnement à partir de cas (RàPC) destiné aux problèmes de classification. Notre travail est appliqué actuellement au diagnostic de la défaillance de détecteurs de gaz mis en place sur des sites industriels. Nous nous intéressons principalement à deux aspects du RàPC : le premier concerne l'adaptation qui est une étape clé du cycle de RàPC. Cette étape permet de produire des solutions pour de nouveaux problèmes en réutilisant les solutions de problèmes déjà rencontrés. L'adaptation constitue un grand enjeu pour les systèmes de RàPC car elle nécessite des connaissances spécifiques au domaine qui sont généralement difficiles à acquérir. Le deuxième aspect concerne le traitement des cas hétérogènes qui soulève des problèmes à différents niveaux, notamment pour l'acquisition des connaissances d'adaptation et la remémoration de cas. Nous présentons notre approche d'acquisition des connaissances d'adaptation à partir de la base de cas, qui est une approche semi-automatique s'appuyant sur les techniques de l'analyse de concepts formels. Les connaissances acquises peuvent être ensuite affinées par l'utilisateur durant les sessions de résolution de problèmes. Nous présentons également notre approche d'alignement de cas pour traiter les problèmes liés à l'hétérogénéité. L'alignement de cas a pour objectif de trouver les correspondances entre les attributs des cas comparés. Nous distinguons l'alignement basé sur la similarité entre les attributs, et l'alignement basé sur les rôles des attributs. Notre travail a conduit au développement de COBRA, une plate-forme pour la construction de systèmes de RàPC basés sur une ontologie
This thesis is about the design of a case-based reasoning (CBR) system for classification problems. Our work is currently applied to the diagnosis of the failure of gas sensors set up at industrial sites. We are mainly interested in two CBR aspects: the first concerns the adaptation, which is a key phase in the CBR cycle. This phase aims at producing solutions to new problems by reusing solutions to problems already solved. Adaptation is considered as the bottleneck of CBR systems because it requires domain-specific knowledge which is generally difficult to acquire. The second aspect concerns the treatment of cases heterogeneity that leads to problems at different levels, especially during the acquisition of adaptation knowledge and the retrieval phase. In this thesis, we present our semi-automatic approach to acquire adaptation knowledge from a case base. This approach relies on the techniques of Formai Concept Analysis (FCA). The acquired knowledge can then be refined by users during problem solving sessions. We present also our case alignment approach to treat the problems related to heterogeneity. Case alignment aims to identify the mappings between the attributes of compared cases. We distinguish an alignment based on the similarity between attributes, and an alignment based on the yoles of attributes. Our work has led to the development of COBRA, a platform allowing to construct ontology-based CBR systems
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

David, Jérôme. "AROMA : une méthode pour la découverte d'alignements orientés entre ontologies à partir de règles d'association". Phd thesis, Université de Nantes, 2007. http://tel.archives-ouvertes.fr/tel-00200040.

Texto completo
Resumen
Ce travail de thèse s'inscrit à l'intersection des deux domaines de recherche que sont l'extraction des connaissances dans les données (ECD) et de l'ingénierie des connaissances. Plus précisément, en nous appuyant sur la combinaison des travaux menés, d'une part sur l'alignement des ontologies, et d'autre part sur la fouille de règles d'association, nous proposons une nouvelle méthode d'alignement d'ontologies associées à des corpus textuels (taxonomies, hiérarchies documentaires, thésaurus, répertoires ou catalogues Web), appelée AROMA (\emph{Association Rule Matching Approach}).

Dans la littérature, la plupart des travaux traitant des méthodes d'alignement d'ontologies ou de schémas s'appuient sur une définition intentionnelle des schémas et utilisent des relations basées sur des mesures de similarité qui ont la particularité d'être symétriques (équivalences). Afin d'améliorer les méthodes d'alignement, et en nous inspirant des travaux sur la découverte de règles d'association, des mesures de qualité associées, et sur l'analyse statistique implicative, nous proposons de découvrir des appariements asymétriques (implications) entre ontologies. Ainsi, la contribution principale de cette thèse concerne la conception d'une méthode d'alignement extensionnelle et orientée basée sur la découverte des implications significatives entre deux hiérarchies plantées dans un corpus textuel.
Notre méthode d'alignement se décompose en trois phases successives. La phase de prétraitement permet de préparer les ontologies à l'alignement en les redéfinissant sur un ensemble commun de termes extraits des textes et sélectionnés statistiquement. La phase de fouille extrait un alignement implicatif entre hiérarchies. La dernière phase de post-traitement des résultats permet de produire des alignements consistants et minimaux (selon un critère de redondance).

Les principaux apports de cette thèse sont : (1) Une modélisation de l'alignement étendue pour la prise en compte de l'implication. Nous définissons les notions de fermeture et couverture d'un alignement permettant de formaliser la redondance et la consistance d'un alignement. Nous étudions également la symétricité et les cardinalités d'un alignement. (2) La réalisation de la méthode AROMA et d'une interface d'aide à la validation d'alignements. (3) Une extension d'un modèle d'évaluation sémantique pour la prise en compte de la présence d'implications dans un alignement. (4) L'étude du comportement et de la performance d'AROMA sur différents types de jeux de tests (annuaires Web, catalogues et ontologies au format OWL) avec une sélection de six mesures de qualité.

Les résultats obtenus sont prometteurs car ils montrent la complémentarité de notre méthode avec les approches existantes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Touzani, Mohamed. "Alignement des ontologies OWL-Lite". Thèse, 2005. http://hdl.handle.net/1866/16677.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Jridi, Jamel Eddine. "L'ingénierie des documents d'affaires dans le cadre du web sémantique". Thèse, 2014. http://hdl.handle.net/1866/11934.

Texto completo
Resumen
Dans cette thèse, nous présentons les problèmes d’échange de documents d'affaires et proposons une méthode pour y remédier. Nous proposons une méthodologie pour adapter les standards d’affaires basés sur XML aux technologies du Web sémantique en utilisant la transformation des documents définis en DTD ou XML Schema vers une représentation ontologique en OWL 2. Ensuite, nous proposons une approche basée sur l'analyse formelle de concept pour regrouper les classes de l'ontologie partageant une certaine sémantique dans le but d'améliorer la qualité, la lisibilité et la représentation de l'ontologie. Enfin, nous proposons l’alignement d'ontologies pour déterminer les liens sémantiques entre les ontologies d'affaires hétérogènes générés par le processus de transformation pour aider les entreprises à communiquer fructueusement.
In this thesis, we present the problems of business document exchanges. We propose a methodology to adapt the XML-based business standards for the Semantic Web technologies by mapping documents defined on DTD or XML Schema to an ontological representation in OWL 2. Next, we propose an approach based on formal concept analysis techniques to regroup the ontology classes sharing some semantics to improve the quality, readability and the representation of the ontology. Finally, we propose ontology alignment to determine the semantic links between heterogeneous business ontologies generated by the transformation process to help entreprises to communicate fruitfully.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía