Índice
Literatura académica sobre el tema "Ontology Alignement"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Ontology Alignement".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Tesis sobre el tema "Ontology Alignement"
Ziani, Mina. "Conception d'une ontologie hybride à partir d'ontologies métier évolutives : intégration et alignement d'ontologies". Thesis, Lyon 3, 2012. http://www.theses.fr/2012LYO30081.
Texto completoThis thesis concerns the scope of knowledge management using ontological models.To represent domain knowledge, we design a hybrid ontology on two levels: In a local level, each experts’ group has designed its own ontology. In a global level, a consensual ontology containing all the shared knowledge is automatically created.We design a computer-aided system to help experts in the process of mapping creation. It allows experts to choice similarity measures relatively to the ontology characteristics, to reuse the calculated similarities and to verify the consistency of the created mappings.In addition, local ontologies can be updated. This involves modifications in the global ontology and on the created mappings. A relevant approach of our domain was developed.In particular, ontology versioning is used in order to keep a record of all the occurred modifications in the ontologies; it allows to return at any time a previous version of the hybrid ontology.The exploited domain is geotechnics which gathers various business experts. A prototype is in progress and currently does not still captures ontology evolution
Abbas, Muhammad Aun. "A Unified Approach for Dealing with Ontology Mappings and their Defects". Thesis, Lorient, 2016. http://www.theses.fr/2016LORIS423/document.
Texto completoAn ontology mapping is a set of correspondences. Each correspondence relates artifacts, such as concepts and properties, of one ontology to artifacts of another ontology. In the last few years, a lot of attention has been paid to establish mappings between source ontologies. Ontology mapping is widely and effectively used for interoperability and integration tasks (data transformation, query answering, or web-service composition, to name a few), and in the creation of new ontologies. On the one side, checking the (logical) correctness of ontology mappings has become a fundamental prerequisite of their use. On the other side, given two ontologies, there are several ontology mappings between them that can be obtained by using different ontology matching methods or just stated manually. Using ontology mappings between two ontologies in combination within a single application or for synthesizing one mapping taking the advantage of two original mappings, may cause errors in the application or in the synthesized mapping because those original mappings may be contradictory (conflicting). In both situations, correctness is usually formalized and verified in the context of fully formalized ontologies (e.g. in logics), even if some “weak” notions of correctness have been proposed when ontologies are informally represented or represented in formalisms preventing a formalization of correctness (such as UML). Verifying correctness is usually performed within one single formalism, requiring on the one side that ontologies need to be represented in this unique formalism and, on the other side, a formal representation of mapping is provided, equipped with notions related to correctness (such as consistency). In practice, there exist several heterogeneous formalisms for expressing ontologies, ranging from informal (text, UML and others) to formal (logical and algebraic). This implies that, willing to apply existing approaches, heterogeneous ontologies should be translated (or just transformed if, the original ontology is informally represented or when full translation, keeping equivalence, is not possible) in one common formalism, mappings need each time to be reformulated, and then correctness can be established. This is possible but possibly leading to correct mappings under one translation and incorrect mapping under another translation. Indeed, correctness (e.g. consistency) depends on the underlying employed formalism in which ontologies and mappings are expressed. Different interpretations of correctness are available within the formal or even informal approaches questioning about what correctness is indeed. In the dissertation, correctness has been reformulated in the context of heterogeneous ontologies by using the theory of Galois connections. Specifically ontologies are represented as lattices and mappings as functions between those lattices. Lattices are natural structures for directly representing ontologies, without changing the original formalisms in which ontologies are expressed. As a consequence, the (unified) notion of correctness has been reformulated by using Galois connection condition, leading to the new notion of compatible and incompatible mappings. It is formally shown that the new notion covers the reviewed correctness notions, provided in distinct state of the art formalisms, and, at the same time, can naturally cover heterogeneous ontologies. The usage of the proposed unified approach is demonstrated by applying it to upper ontology mappings. Notion of compatible and incompatible ontology mappings is also applied on domain ontologies to highlight that incompatible ontology mappings give incorrect results when used for ontology merging
Menad, Safaa. "Enrichissement et alignement sémantique d'οntοlοgies biοmédicales par mοdèles de langue". Electronic Thesis or Diss., Normandie, 2024. http://www.theses.fr/2024NORMR104.
Texto completoThe first part of this thesis addresses the design of siamese neural models trained for semantic similarity between biomedical texts and their application to NLP tasks on biomedical documents. The training of these models was performed by embedding the titles and abstracts from the PubMed corpus along with the MeSH thesaurus into a common space. In the second part, we use these models to align and enrich the terminologies of UMLS (Unified Medical Language System) and automate the integration of new relationships between similar concepts, particularly from diseases (DOID), drugs (DRON), and symptoms. These enriched relationships enhance the usability of these ontologies, thereby facilitating their application in various clinical and scientific domains. Additionally, we propose validation approaches using resources such as LLMs, OpenFDA, the UMLS Metathesaurus, and the UMLS semantic network, supplemented by manual validation from domain experts
Song, Fuqi. "Contribution à l'interopérabilité des entreprises par alignement d'ontologies". Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00909637.
Texto completoFan, Zhengjie. "Concise Pattern Learning for RDF Data Sets Interlinking". Thesis, Grenoble, 2014. http://www.theses.fr/2014GRENM013/document.
Texto completoThere are many data sets being published on the web with Semantic Web technology. The data sets usually contain analogous data which represent the similar resources in the world. If these data sets are linked together by correctly identifying the similar instances, users can conveniently query data through a uniform interface, as if they are connecting a single database. However, finding correct links is very challenging because web data sources usually have heterogeneous ontologies maintained by different organizations. Many existing solutions have been proposed for this problem. (1) One straight-forward idea is to compare the attribute values of instances for identifying links, yet it is impossible to compare all possible pairs of attribute values. (2) Another common strategy is to compare instances with correspondences found by instance-based ontology matching, which can generate attribute correspondences based on overlapping ranges between two attributes, while it is easy to cause incomparable attribute correspondences or undiscovered comparable attribute correspondences. (3) Many existing solutions leverage Genetic Programming to construct interlinking patterns for comparing instances, however the running times of the interlinking methods are usually long. In this thesis, an interlinking method is proposed to interlink instances for different data sets, based on both statistical learning and symbolic learning. On the one hand, the method discovers potential comparable attribute correspondences of each class correspondence via a K-medoids clustering algorithm with instance value statistics. We adopt K-medoids because of its high working efficiency and high tolerance on irregular data and even incorrect data. The K-medoids classifies attributes of each class into several groups according to their statistical value features. Groups from different classes are mapped when they have similar statistical value features, to determine potential comparable attribute correspondences. The clustering procedure effectively narrows the range of candidate attribute correspondences. On the other hand, our solution also leverages a symbolic learning method, called Version Space. Version Space is an iterative learning model that searches for the interlinking pattern from two directions. Our design can solve the interlinking task that does not have a single compatible conjunctive interlinking pattern that covers all assessed correct links with a concise format. The interlinking solution is evaluated with large-scale real-world data from IM@OAEI and CKAN. Experiments confirm that the solution with only 1% of sample links already reaches a high accuracy (up to 0.94-0.99 on F-measure). The F-measure quickly converges improving on other state-of-the-art approaches, by nearly 10 percent of their F-measure values
Annane, Amina. "Using Background Knowledge to Enhance Biomedical Ontology Matching". Thesis, Montpellier, 2018. http://www.theses.fr/2018MONTS032/document.
Texto completoLife sciences produce a huge amount of data (e.g., clinical trials, scientific articles) so that integrating and analyzing all the datasets related to a given research question like the correlation between phenotypes and genotypes, is a key element for knowledge discovery. The life sciences community adopted Semantic Web technologies to achieve data integration and interoperability, especially ontologies which are the key technology to represent and share the increasing amount of data on the Web. Indeed, ontologies provide a common domain vocabulary for humans, and formal entity definitions for machines.A large number of biomedical ontologies and terminologies has been developed to represent and annotate various datasets. However, datasets represented with different overlapping ontologies are not interoperable. It is therefore crucial to establish correspondences between the ontologies used; an active area of research known as ontology matching.Original ontology matching methods usually exploit the lexical and structural content of the ontologies to align. These methods are less effective when the ontologies to align are lexically heterogeneous i.e., when equivalent concepts are described with different labels. To overcome this issue, the ontology matching community has turned to the use of external knowledge resources as a semantic bridge between the ontologies to align. This approach arises several new issues mainly: (1) the selection of these background resources, (2) the exploitation of the selected resources to enhance the matching results. Several works have dealt with these issues jointly or separately. In our thesis, we made a systematic review and historical evaluation comparison of state-of-the-art approaches.Ontologies, others than the ones to align, are the most used background knowledge resources. Related works often select a set of complete ontologies as background knowledge, even if, only fragments of the selected ontologies are actually effective for discovering new mappings. We propose a novel BK-based ontology matching approach that selects and builds a knowledge resource with just the right concepts chosen from a set of ontologies. The conducted experiments showed that our BK selection approach improves efficiency without loss of effectiveness.Exploiting background knowledge resources in ontology matching is a double-edged sword: while it may increase recall (i.e., retrieve more correct mappings), it may lower precision (i.e., produce more incorrect mappings). We propose two methods to select the most relevant mappings from the candidate ones: (1) based on a set of rules and (2) with Supervised Machine Learning. We experiment and evaluate our approach in the biomedical domain, thanks to the profusion of knowledge resources in biomedicine (ontologies, terminologies and existing alignments).We evaluated our approach with extensive experiments on two Ontology Alignment Evaluation Initiative (OAEI) benchmarks. Our results confirm the effectiveness and efficiency of our approach and overcome or compete with state-of-the-art matchers exploiting background knowledge resources
Tounsi, Dhouib Molka. "Ingénierie des connaissances dans le domaine du sourcing pour la recommandation de prestataires". Thesis, Université Côte d'Azur, 2021. http://www.theses.fr/2021COAZ4024.
Texto completoThis CIFRE doctoral thesis is part of a collaborative research project between the I3S laboratory of the University of Côte d'Azur and the Silex company, and addresses the field of recommendation systems. Silex is a start-up that develops a Software-as-a-Service sourcing tool that allows companies to provide a description of their professional activities, their offers and/or the services they are looking for in natural language (currently French).In this context, the objective of this thesis is to propose a decision support system by exploiting the semantic knowledge that are extracted from the textual descriptions of requests for services and providers, in order to recommend relevant providers for a service request.The contributions of this thesis are the following. First, we proposed a vocabulary for the sourcing field by reusing and integrating existing vocabularies, in order to semantically annotate the textual descriptions of providers and requests for services. Second, we proposed an automatic alignment method to establish the correspondence between different concepts of the considered vocabularies. This approach is based on rules exploiting embedding space and measurements on groups of labels to discover the relationships between concepts. Third, we proposed an algorithm for extracting named entities from the textual descriptions of service requests and providers, and an algorithm for semantic annotation of these descriptions, based on the linking of the extracted entities with the concepts of the defined vocabulary.Fourth, we proposed a provider recommendation algorithm that exploits these knowledges extracted.Finally, we studied the contribution of using ontological knowledge to improve our decision support system for the sourcing domain in order to recommend relevant providers for a service request.The contributions of this thesis are the following. First, we proposed a vocabulary for the sourcing field in order to semantically annotate the textual descriptions of providers and requests for services. This vocabulary was built by reusing and integrating existing vocabularies. Second, we proposed an automatic alignment method to establish the correspondence between different concepts of the considered vocabularies. This approach is based on rules exploiting embedding space and measurements on groups of labels to discover the relationships between concepts. Third, we proposed an algorithm for extracting named entities from the textual descriptions of service requests and providers, and an algorithm for semantic annotation of these descriptions, based on the linking of the extracted entities with the concepts of the defined vocabulary.Fourth, we proposed a provider recommendation algorithm that exploits these knowledge extracted.Finally, we studied the contribution of using ontological knowledge to improve our decision support system for the sourcing domain
Hamdi, Fayçal. "Améliorer l'interopérabilité sémantique : applicabilité et utilité de l'alignement d'ontologies". Phd thesis, Université Paris Sud - Paris XI, 2011. http://tel.archives-ouvertes.fr/tel-00662523.
Texto completoNgo, Duy Hoa. "Enhancing Ontology Matching by Using Machine Learning, Graph Matching and Information Retrieval Techniques". Thesis, Montpellier 2, 2012. http://www.theses.fr/2012MON20096/document.
Texto completoIn recent years, ontologies have attracted a lot of attention in the Computer Science community, especially in the Semantic Web field. They serve as explicit conceptual knowledge models and provide the semantic vocabularies that make domain knowledge available for exchange and interpretation among information systems. However, due to the decentralized nature of the semantic web, ontologies are highlyheterogeneous. This heterogeneity mainly causes the problem of variation in meaning or ambiguity in entity interpretation and, consequently, it prevents domain knowledge sharing. Therefore, ontology matching, which discovers correspondences between semantically related entities of ontologies, becomes a crucial task in semantic web applications.Several challenges to the field of ontology matching have been outlined in recent research. Among them, selection of the appropriate similarity measures as well as configuration tuning of their combination are known as fundamental issues that the community should deal with. In addition, verifying the semantic coherent of the discovered alignment is also known as a crucial task. Furthermore, the difficulty of the problem grows with the size of the ontologies. To deal with these challenges, in this thesis, we propose a novel matching approach, which combines different techniques coming from the fields of machine learning, graph matching and information retrieval in order to enhance the ontology matching quality. Indeed, we make use of information retrieval techniques to design new effective similarity measures for comparing labels and context profiles of entities at element level. We also apply a graph matching method named similarity propagation at structure level that effectively discovers mappings by exploring structural information of entities in the input ontologies. In terms of combination similarity measures at element level, we transform the ontology matching task into a classification task in machine learning. Besides, we propose a dynamic weighted sum method to automatically combine the matching results obtained from the element and structure level matchers. In order to remove inconsistent mappings, we design a new fast semantic filtering method. Finally, to deal with large scale ontology matching task, we propose two candidate selection methods to reduce computational space.All these contributions have been implemented in a prototype named YAM++. To evaluate our approach, we adopt various tracks namely Benchmark, Conference, Multifarm, Anatomy, Library and Large BiomedicalOntologies from the OAEI campaign. The experimental results show that the proposed matching methods work effectively. Moreover, in comparison to other participants in OAEI campaigns, YAM++ showed to be highly competitive and gained a high ranking position
Laadhar, Amir. "Local matching learning of large scale biomedical ontologies". Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30126.
Texto completoAlthough a considerable body of research work has addressed the problem of ontology matching, few studies have tackled the large ontologies used in the biomedical domain. We introduce a fully automated local matching learning approach that breaks down a large ontology matching task into a set of independent local sub-matching tasks. This approach integrates a novel partitioning algorithm as well as a set of matching learning techniques. The partitioning method is based on hierarchical clustering and does not generate isolated partitions. The matching learning approach employs different techniques: (i) local matching tasks are independently and automatically aligned using their local classifiers, which are based on local training sets built from element level and structure level features, (ii) resampling techniques are used to balance each local training set, and (iii) feature selection techniques are used to automatically select the appropriate tuning parameters for each local matching context. Our local matching learning approach generates a set of combined alignments from each local matching task, and experiments show that a multiple local classifier approach outperforms conventional, state-of-the-art approaches: these use a single classifier for the whole ontology matching task. In addition, focusing on context-aware local training sets based on local feature selection and resampling techniques significantly enhances the obtained results