Literatura académica sobre el tema "Online algorithms with recourse"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Online algorithms with recourse".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Online algorithms with recourse"
Vasilopoulos, Vasileios, Georgios Pavlakos, Karl Schmeckpeper, Kostas Daniilidis y Daniel E. Koditschek. "Reactive navigation in partially familiar planar environments using semantic perceptual feedback". International Journal of Robotics Research 41, n.º 1 (22 de octubre de 2021): 85–126. http://dx.doi.org/10.1177/02783649211048931.
Texto completoAbdelkader, Krifa y Bouzrara Kais. "Robust H∞ gain neuro-adaptive observer design for nonlinear uncertain systems". Transactions of the Institute of Measurement and Control 41, n.º 8 (17 de septiembre de 2018): 2293–309. http://dx.doi.org/10.1177/0142331218798685.
Texto completoAngelopoulos, Spyros, Christoph Dürr y Shendan Jin. "Online maximum matching with recourse". Journal of Combinatorial Optimization 40, n.º 4 (3 de septiembre de 2020): 974–1007. http://dx.doi.org/10.1007/s10878-020-00641-w.
Texto completoAvitabile, T., C. Mathieu y L. Parkinson. "Online constrained optimization with recourse". Information Processing Letters 113, n.º 3 (febrero de 2013): 81–86. http://dx.doi.org/10.1016/j.ipl.2012.09.011.
Texto completoWang, Jinde. "Approximate nonlinear programming algorithms for solving stochastic programs with recourse". Annals of Operations Research 31, n.º 1 (diciembre de 1991): 371–84. http://dx.doi.org/10.1007/bf02204858.
Texto completoKulkarni, Ankur A. y Uday V. Shanbhag. "Recourse-based stochastic nonlinear programming: properties and Benders-SQP algorithms". Computational Optimization and Applications 51, n.º 1 (12 de febrero de 2010): 77–123. http://dx.doi.org/10.1007/s10589-010-9316-8.
Texto completoMegow, Nicole, Martin Skutella, José Verschae y Andreas Wiese. "The Power of Recourse for Online MST and TSP". SIAM Journal on Computing 45, n.º 3 (enero de 2016): 859–80. http://dx.doi.org/10.1137/130917703.
Texto completoSmale, Steve y Yuan Yao. "Online Learning Algorithms". Foundations of Computational Mathematics 6, n.º 2 (23 de septiembre de 2005): 145–70. http://dx.doi.org/10.1007/s10208-004-0160-z.
Texto completoBARBAKH, WESAM y COLIN FYFE. "ONLINE CLUSTERING ALGORITHMS". International Journal of Neural Systems 18, n.º 03 (junio de 2008): 185–94. http://dx.doi.org/10.1142/s0129065708001518.
Texto completoWang, Paul Y., Sainyam Galhotra, Romila Pradhan y Babak Salimi. "Demonstration of generating explanations for black-box algorithms using Lewis". Proceedings of the VLDB Endowment 14, n.º 12 (julio de 2021): 2787–90. http://dx.doi.org/10.14778/3476311.3476345.
Texto completoTesis sobre el tema "Online algorithms with recourse"
Lowe, Wing Wah. "An exploration of stochastic decomposition algorithms for stochastic linear programs with recourse". Diss., The University of Arizona, 1994. http://hdl.handle.net/10150/186667.
Texto completoLi, Le. "Online stochastic algorithms". Thesis, Angers, 2018. http://www.theses.fr/2018ANGE0031.
Texto completoThis thesis works mainly on three subjects. The first one is online clustering in which we introduce a new and adaptive stochastic algorithm to cluster online dataset. It relies on a quasi-Bayesian approach, with a dynamic (i.e., time-dependent) estimation of the (unknown and changing) number of clusters. We prove that this algorithm has a regret bound of the order of and is asymptotically minimax under the constraint on the number of clusters. A RJMCMC-flavored implementation is also proposed. The second subject is related to the sequential learning of principal curves which seeks to represent a sequence of data by a continuous polygonal curve. To this aim, we introduce a procedure based on the MAP of Gibbs-posterior that can give polygonal lines whose number of segments can be chosen automatically. We also show that our procedure is supported by regret bounds with sublinear remainder terms. In addition, a greedy local search implementation that incorporates both sleeping experts and multi-armed bandit ingredients is presented. The third one concerns about the work which aims to fulfilling practical tasks within iAdvize, the company which supports this thesis. It includes sentiment analysis for textual messages by using methods in both text mining and statistics, and implementation of chatbot based on nature language processing and neural networks
Shi, Tian. "Novel Algorithms for Understanding Online Reviews". Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/104998.
Texto completoDoctor of Philosophy
Nowadays, online reviews are playing an important role in our daily lives. They are also critical to the success of many e-commerce and local businesses because they can help people build trust in brands and businesses, provide insights into products and services, and improve consumers' confidence. As a large number of reviews accumulate every day, a central research problem is to build an artificial intelligence system that can understand and interact with these reviews, and further use them to offer customers better support and services. In order to tackle challenges in these applications, we first have to get an in-depth understanding of online reviews. In this dissertation, we focus on the review understanding problem and develop machine learning and natural language processing tools to understand reviews and learn structured knowledge from unstructured reviews. We have addressed the review understanding problem in three directions, including understanding a collection of reviews, understanding a single review, and understanding a piece of a review segment. In the first direction, we proposed a short-text topic modeling method to extract topics from review corpora that consist of primary complaints of consumers. In the second direction, we focused on building sentiment analysis models to predict the opinions of consumers from their reviews. Our deep learning models can provide good prediction accuracy as well as a human-understandable explanation for the prediction. In the third direction, we develop an aspect detection method to automatically extract sentences that mention certain features consumers are interested in, from reviews, which can help customers efficiently navigate through reviews and help businesses identify the advantages and disadvantages of their products.
Trippen, Gerhard Wolfgang. "Online exploration and search in graphs /". View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?COMP%202006%20TRIPPE.
Texto completoLi, Rongbin y 李榕滨. "New competitive algorithms for online job scheduling". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2014. http://hdl.handle.net/10722/197555.
Texto completopublished_or_final_version
Computer Science
Doctoral
Doctor of Philosophy
ALBUQUERQUE, LUIZ FERNANDO FERNANDES DE. "ONLINE ALGORITHMS ANALYSIS FOR SPONSORED LINKS SELECTION". PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2009. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=16088@1.
Texto completoLinks patrocinados são aqueles que aparecem em destaque nos resultados de pesquisas em máquinas de busca na Internet e são grande fonte de receita para seus provedores. Para os anunciantes, que fazem ofertas por palavras-chave para aparecerem em destaque nas consultas dos usuários, são uma oportunidade de divulgação da marca, conquista e manutenção de clientes. Um dos desafios das máquinas de busca neste modelo de negócio é selecionar os anunciantes que serão exibidos a cada consulta de modo a maximizar sua receita em determinado período. Este é um problema tipicamente online, onde a cada consulta é tomada uma decisão sem o conhecimento prévio das próximas consultas. Após uma decisão ser tomada, esta não pode mais ser alterada. Nesta dissertação avaliamos experimentalmente algoritmos propostos na literatura para solução deste problema, comparando-os à solução ótima offline, em simulações com dados sintéticos. Supondo que o conjunto das consultas diárias obedeça a uma determinada distribuição, propomos dois algoritmos baseados em informações estocásticas que são avaliados nos mesmos cenários que os outros algoritmos.
Sponsored links are those that appear highlighted at Internet search engine results. They are responsible for a large amount of their providers’ revenue. To advertisers, that place bids for keywords in large auctions at Internet, these links are the opportunity of brand exposing and achieving more clients. To search engine companies, one of the main challenges in this business model is selecting which advertisers should be allocated to each new query to maximize their total revenue in the end of the day. This is a typical online problem, where for each query is taken a decision without previous knowledge of future queries. Once the decision is taken, it can not be modified anymore. In this work, using synthetically generated data, we do experimental evaluation of three algorithms proposed in the literature for this problem and compare their results with the optimal offline solution. Considering that daily query set obeys some well known distribution, we propose two algorithms based on stochastic information, those are evaluated in the same scenarios of the others.
Pasteris, S. U. "Efficient algorithms for online learning over graphs". Thesis, University College London (University of London), 2016. http://discovery.ucl.ac.uk/1516210/.
Texto completoBonifaci, Vincenzo. "Models and algorithms for online server routing". Doctoral thesis, La Sapienza, 2007. http://hdl.handle.net/11573/917056.
Texto completoHarrington, Edward Francis. "Aspects of online learning /". View thesis entry in Australian Digital Theses Program, 2004. http://thesis.anu.edu.au/public/adt-ANU20060328.160810/index.html.
Texto completoKamphans, Thomas. "Models and algorithms for online exploration and search". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980408121.
Texto completoLibros sobre el tema "Online algorithms with recourse"
Fiat, Amos y Gerhard J. Woeginger, eds. Online Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029561.
Texto completoKaklamanis, Christos y Asaf Levin, eds. Approximation and Online Algorithms. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80879-2.
Texto completoKoenemann, Jochen y Britta Peis, eds. Approximation and Online Algorithms. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-92702-8.
Texto completoChalermsook, Parinya y Bundit Laekhanukit, eds. Approximation and Online Algorithms. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18367-6.
Texto completoBampis, Evripidis y Ola Svensson, eds. Approximation and Online Algorithms. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18263-6.
Texto completoSanità, Laura y Martin Skutella, eds. Approximation and Online Algorithms. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-28684-6.
Texto completoErlebach, Thomas y Giuseppe Persiano, eds. Approximation and Online Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38016-7.
Texto completoSolis-Oba, Roberto y Giuseppe Persiano, eds. Approximation and Online Algorithms. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29116-6.
Texto completoJansen, Klaus y Monaldo Mastrolilli, eds. Approximation and Online Algorithms. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-51741-4.
Texto completoSolis-Oba, Roberto y Rudolf Fleischer, eds. Approximation and Online Algorithms. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-89441-6.
Texto completoCapítulos de libros sobre el tema "Online algorithms with recourse"
Liu, Alison Hsiang-Hsuan y Jonathan Toole-Charignon. "The Power of Amortized Recourse for Online Graph Problems". En Approximation and Online Algorithms, 134–53. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-18367-6_7.
Texto completoGupta, Anupam, Vijaykrishna Gurunathan, Ravishankar Krishnaswamy, Amit Kumar y Sahil Singla. "Online Discrepancy with Recourse for Vectors and Graphs". En Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 1356–83. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2022. http://dx.doi.org/10.1137/1.9781611977073.57.
Texto completoFiat, Amos y Gerhard J. Woeginger. "Competitive analysis of algorithms". En Online Algorithms, 1–12. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029562.
Texto completoAlbers, Susanne y Jeffery Westbrook. "Self-organizing data structures". En Online Algorithms, 13–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029563.
Texto completoIrani, Sandy. "Competitive analysis of paging". En Online Algorithms, 52–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029564.
Texto completoChrobak, Marek y Lawrence L. Larmore. "Metrical task systems, the server problem and the work function algorithm". En Online Algorithms, 74–96. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029565.
Texto completoBartal, Yair. "Distributed paging". En Online Algorithms, 97–117. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029566.
Texto completoAspnes, James. "Competitive analysis of distributed algorithms". En Online Algorithms, 118–46. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029567.
Texto completoCsirik, János y Gerhard J. Woeginger. "On-line packing and covering problems". En Online Algorithms, 147–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029568.
Texto completoAzar, Yossi. "On-line load balancing". En Online Algorithms, 178–95. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0029569.
Texto completoActas de conferencias sobre el tema "Online algorithms with recourse"
Fonseca, João, Andrew Bell, Carlo Abrate, Francesco Bonchi y Julia Stoyanovich. "Setting the Right Expectations: Algorithmic Recourse Over Time". En EAAMO '23: Equity and Access in Algorithms, Mechanisms, and Optimization. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3617694.3623251.
Texto completoKrishnaswamy, Ravishankar, Shi Li y Varun Suriyanarayana. "Online Unrelated-Machine Load Balancing and Generalized Flow with Recourse". En STOC '23: 55th Annual ACM Symposium on Theory of Computing. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3564246.3585222.
Texto completoAbé, M. y T. Igusa. "New Control Algorithms for Semi-Active Dynamic Vibration Absorbers". En ASME 1995 Design Engineering Technical Conferences collocated with the ASME 1995 15th International Computers in Engineering Conference and the ASME 1995 9th Annual Engineering Database Symposium. American Society of Mechanical Engineers, 1995. http://dx.doi.org/10.1115/detc1995-0619.
Texto completoMeng, De, Maryam Fazel y Mehran Mesbahi. "Online algorithms for network formation". En 2016 IEEE 55th Conference on Decision and Control (CDC). IEEE, 2016. http://dx.doi.org/10.1109/cdc.2016.7798259.
Texto completoBern, M., D. H. Greene, A. Raghunathan y M. Sudan. "Online algorithms for locating checkpoints". En the twenty-second annual ACM symposium. New York, New York, USA: ACM Press, 1990. http://dx.doi.org/10.1145/100216.100264.
Texto completoMeyerson, Adam. "Online algorithms for network design". En the sixteenth annual ACM symposium. New York, New York, USA: ACM Press, 2004. http://dx.doi.org/10.1145/1007912.1007958.
Texto completoKuh, Anthony, Muhammad Sharif Uddin y Phyllis Ng. "Online unsupervised kernel learning algorithms". En 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2017. http://dx.doi.org/10.1109/apsipa.2017.8282179.
Texto completoRamanathan, Dinesh y Rajesh Gupta. "System level online power management algorithms". En the conference. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/343647.343867.
Texto completoUddin, Muhammad Sharif y Anthony Kuh. "Online Unsupervised Kernel Affine Projection Algorithms". En 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC). IEEE, 2018. http://dx.doi.org/10.23919/apsipa.2018.8659616.
Texto completoAndro-Vasko, James, Wolfgang Bein, Dara Nyknahad y Hiro Ito. "Evaluation of Online Power-Down Algorithms". En 2015 12th International Conference on Information Technology - New Generations (ITNG). IEEE, 2015. http://dx.doi.org/10.1109/itng.2015.82.
Texto completoInformes sobre el tema "Online algorithms with recourse"
Ur, Shmuel. Analysis of Online Algorithms for Organ Allocation. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1990. http://dx.doi.org/10.21236/ada249361.
Texto completoLabrindis, Alexandros y Nick Roussopoulos. A Performance Evaluation of Online Warehouse Update Algorithms. Fort Belvoir, VA: Defense Technical Information Center, enero de 1998. http://dx.doi.org/10.21236/ada441038.
Texto completoMathew, Jijo K., Christopher M. Day, Howell Li y Darcy M. Bullock. Curating Automatic Vehicle Location Data to Compare the Performance of Outlier Filtering Methods. Purdue University, 2021. http://dx.doi.org/10.5703/1288284317435.
Texto completoDanylchuk, Hanna B. y Serhiy O. Semerikov. Advances in machine learning for the innovation economy: in the shadow of war. Криворізький державний педагогічний університет, agosto de 2023. http://dx.doi.org/10.31812/123456789/7732.
Texto completoArhin, Stephen, Babin Manandhar, Hamdiat Baba Adam y Adam Gatiba. Predicting Bus Travel Times in Washington, DC Using Artificial Neural Networks (ANNs). Mineta Transportation Institute, abril de 2021. http://dx.doi.org/10.31979/mti.2021.1943.
Texto completo