Literatura académica sobre el tema "Online algorithm with advice"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Online algorithm with advice".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Online algorithm with advice"
Lee, Russell, Jessica Maghakian, Mohammad Hajiesmaili, Jian Li, Ramesh Sitaraman y Zhenhua Liu. "Online peak-aware energy scheduling with untrusted advice". ACM SIGEnergy Energy Informatics Review 1, n.º 1 (noviembre de 2021): 59–77. http://dx.doi.org/10.1145/3508467.3508473.
Texto completoBianchi, Maria Paola, Hans-Joachim Böckenhauer, Tatjana Brülisauer, Dennis Komm y Beatrice Palano. "Online Minimum Spanning Tree with Advice". International Journal of Foundations of Computer Science 29, n.º 04 (junio de 2018): 505–27. http://dx.doi.org/10.1142/s0129054118410034.
Texto completoBoyar, Joan, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen y Jesper W. Mikkelsen. "Online Algorithms with Advice". ACM Computing Surveys 50, n.º 2 (19 de junio de 2017): 1–34. http://dx.doi.org/10.1145/3056461.
Texto completoBarrière, Lali, Xavier Muñoz, Janosch Fuchs y Walter Unger. "Online Matching in Regular Bipartite Graphs". Parallel Processing Letters 28, n.º 02 (junio de 2018): 1850008. http://dx.doi.org/10.1142/s0129626418500081.
Texto completoChen, Li-Hsuan, Ling-Ju Hung, Henri Lotze y Peter Rossmanith. "Online Node- and Edge-Deletion Problems with Advice". Algorithmica 83, n.º 9 (30 de junio de 2021): 2719–53. http://dx.doi.org/10.1007/s00453-021-00840-9.
Texto completoLykouris, Thodoris y Sergei Vassilvitskii. "Competitive Caching with Machine Learned Advice". Journal of the ACM 68, n.º 4 (7 de julio de 2021): 1–25. http://dx.doi.org/10.1145/3447579.
Texto completoBoyar, Joan, Lene M. Favrholdt, Christian Kudahl, Kim S. Larsen y Jesper W. Mikkelsen. "Online Algorithms with Advice: A Survey". ACM SIGACT News 47, n.º 3 (31 de agosto de 2016): 93–129. http://dx.doi.org/10.1145/2993749.2993766.
Texto completoBöckenhauer, Hans-Joachim, Dennis Komm, Rastislav Královič, Richard Královič y Tobias Mömke. "Online algorithms with advice: The tape model". Information and Computation 254 (junio de 2017): 59–83. http://dx.doi.org/10.1016/j.ic.2017.03.001.
Texto completoAumayr, Erik, Jeffrey Chan y Conor Hayes. "Reconstruction of Threaded Conversations in Online Discussion Forums". Proceedings of the International AAAI Conference on Web and Social Media 5, n.º 1 (3 de agosto de 2021): 26–33. http://dx.doi.org/10.1609/icwsm.v5i1.14122.
Texto completoZhao, Xiaofan y Hong Shen. "Online algorithms for 2D bin packing with advice". Neurocomputing 189 (mayo de 2016): 25–32. http://dx.doi.org/10.1016/j.neucom.2015.11.035.
Texto completoTesis sobre el tema "Online algorithm with advice"
Renault, Marc Paul. "Lower and upper bounds for online algorithms with advice". Paris 7, 2014. http://www.theses.fr/2014PA077196.
Texto completoOnline algorithms operate in a setting where the input is revealed piece by piece; the pieces are called requests. After receiving each request, online algorithms must take an action before the next request is revealed, i. E. Online algorithms must make irrevocable decisions based on the input revealed so far without any knowledge of the future input. The goal is to optimize some cost function over the input. Competitive analysis is the standard method used to analyse the quality of online algorithms. The competitive ratio is the worst case ratio, over all valid finite request sequences, of the online algorithm's performance against an optimal offline algorithm for the same request sequence. The competitive ratio compares the performance of an algorithm with no knowledge about the future against an algorithm with full knowledge about the future. Since the complete absence of future knowledge is often not a reasonable assumption, models, termed online algorithms with advice, which give the online algorithms access to a quantified amount of future knowledge, have been proposed. The interest in this model is in examining how the competitive ratio changes as a function of the amount of advice. In this thesis, we present upper and lower bounds in the advice model for classical online problems such as the k-server problem, the bin packing problem, the dual bin packing (multiple knapsack) problem, scheduling problem on m identical machines, the reordering buffer management problem and the list update problem
Jin, Shendan. "Online computation beyond standard models". Electronic Thesis or Diss., Sorbonne université, 2020. http://www.theses.fr/2020SORUS152.
Texto completoIn the standard setting of online computation, the input is not entirely available from the beginning, but is revealed incrementally, piece by piece, as a sequence of requests. Whenever a request arrives, the online algorithm has to make immediately irrevocable decisions to serve the request, without knowledge on the future requests. Usually, the standard framework to evaluate the performance of online algorithms is competitive analysis, which compares the worst-case performance of an online algorithm to an offline optimal solution. In this thesis, we will study some new ways of looking at online problems. First, we study the online computation in the recourse model, in which the irrevocability on online decisions is relaxed. In other words, the online algorithm is allowed to go back and change previously made decisions. More precisely, we show how to identify the trade-off between the number of re-optimization and the performance of online algorithms for the online maximum matching problem. Moreover, we study measures other than competitive analysis for evaluating the performance of online algorithms. We observe that sometimes, competitive analysis cannot distinguish the performance of different algorithms due to the worst-case nature of the competitive ratio. We demonstrate that a similar situation arises in the linear search problem. More precisely, we revisit the linear search problem and introduce a measure, which can be applied as a refinement of the competitive ratio. Last, we study the online computation in the advice model, in which the algorithm receives as input not only a sequence of requests, but also some advice on the request sequence. Specifically, we study a recent model with untrusted advice, in which the advice can be either trusted or untrusted. Assume that in the latter case, the advice can be generated from a malicious source. We show how to identify a Pareto optimal strategy for the online bidding problem in the untrusted advice model
Cayuela, Rafols Marc. "Algorithmic Study on Prediction with Expert Advice : Study of 3 novel paradigms with Grouped Experts". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254344.
Texto completoHuvudarbetet för den här avhandlingen har varit en grundlig studie av den nya Prediction with Partially Monitored Grouped Expert Advice and Side Information paradigmet. Detta är nyligen föreslagit i denna avhandling, och det utökar det brett studerade Prediction with Expert Advice paradigmet. Förlängningen baseras på två antaganden och en begränsning som ändrar det ursprungliga problemet. Det första antagandet, Grouped, förutsätter att experterna är inbyggda i grupper. Det andra antagandet, Side Information, introducerar ytterligare information som kan användas för att i tid relatera förutsägelser med grupper. Slutligen innebär begränsningen, Partially Monitored, att gruppens förutsägelser endast är kända för en grupp i taget. Studien av detta paradigm innefattar utformningen av en komplett förutsägelsesalgoritm, beviset på en teoretisk bindning till det sämre fallet kumulativa ånger för en sådan algoritm och en experimentell utvärdering av algoritmen (bevisar förekomsten av fall där detta paradigm överträffar Prediction with Expert Advice). Eftersom algoritmens utveckling är konstruktiv tillåter den dessutom att enkelt bygga två ytterligare prediksionsalgoritmer för Prediction with Grouped Expert Advice och Prediction with Grouped Expert Advice and Side Information paradigmer. Därför presenterar denna avhandling tre nya prediktionsalgoritmer med motsvarande ångergränser och en jämförande experimentell utvärdering inklusive det ursprungliga Prediction with Expert Advice paradigmet.
Henke, Hans-Christian. "Online Advice : Konzeption eines ergebnisbasierten Simulationsansatzes /". [S.l. : s.n.], 2003. http://www.gbv.de/dms/zbw/362397171.pdf.
Texto completoFurkin, Jennifer D. "MOM TO MOM: ONLINE BREASTFEEDING ADVICE". UKnowledge, 2018. https://uknowledge.uky.edu/comm_etds/64.
Texto completoPorter, Noriko. "Japanese and U. S. mother's concerns and experts' advice content analysis of mothers' questions on online message boards and experts' advice in parenting magazines /". Diss., Columbia, Mo. : University of Missouri-Columbia, 2008. http://hdl.handle.net/10355/5517.
Texto completoThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on June 15, 2009) Vita. Includes bibliographical references.
Fowler-Dawson, Amy E. "Expand your online reach with these 10 social media tips from the pros: An analysis of online social networking advice". OpenSIUC, 2016. https://opensiuc.lib.siu.edu/theses/2047.
Texto completoBarbaro, Billy. "Tuning Hyperparameters for Online Learning". Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1522419008006144.
Texto completoMurphy, Nicholas John. "An online learning algorithm for technical trading". Master's thesis, Faculty of Science, 2019. http://hdl.handle.net/11427/31048.
Texto completoOrlansky, Emily. "Beauty is in the mouth of the beholder advice networks at Haverford College /". Diss., Connect to the thesis, 2009. http://hdl.handle.net/10066/3707.
Texto completoLibros sobre el tema "Online algorithm with advice"
Kienholz, Michelle. Online guide to medical research: Valuable internet resources for medical research, practice & advice. San Jose, CA: Ventana, 1999.
Buscar texto completoMoore, Alexis. Cyber self-defense: Expert advice to avoid online predators, identity theft, and cyberbullying. Guilford, Connecticut: Lyons Press, 2014.
Buscar texto completoThe weblog handbook: Practical advice on creating and maintaining your blog. Cambridge, MA: Perseus Pub., 2002.
Buscar texto completoJohn, Yate Martin, ed. Knock 'em dead résumés: Smart advice to make your online and paper résumés more productive. 8a ed. Avon, Mass: Adams Media, 2008.
Buscar texto completoPauline, David, ed. Your personal net doctor: Your guide to health and medical advice on the Internet and online services. New York: Wolff New Media, 1996.
Buscar texto completoTwitter marketing tips: 3 surprisingly powerful tips to make Twitter pay off with no costs upfront and much more : 101 world class expert facts, hints, tips and advice on Twitter. Brisbane, Australia]: [Emereo], 2009.
Buscar texto completoPrice, Joan. The insider's guide to internet health searches: Real-life success stories and expert advice for finding online health information you can trust. Emmaus, PA: Rodale Press, 2002.
Buscar texto completoGiuseppe, Persiano y SpringerLink (Online service), eds. Approximation and Online Algorithms: 9th International Workshop, WAOA 2011, Saarbrücken, Germany, September 8-9, 2011, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Buscar texto completoErlebach, Thomas. Approximation and Online Algorithms: 10th International Workshop, WAOA 2012, Ljubljana, Slovenia, September 13-14, 2012, Revised Selected Papers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Buscar texto completoBolles, Mark Emery. Job-hunting online: A guide to job listings, message boards, research sites, the UnderWeb, counseling, networking, self-assessment tools, niche sites. 5a ed. Berkeley: Ten Speed Press, 2008.
Buscar texto completoCapítulos de libros sobre el tema "Online algorithm with advice"
Borodin, Allan, Joan Boyar, Kim S. Larsen y Denis Pankratov. "Advice Complexity of Priority Algorithms". En Approximation and Online Algorithms, 69–86. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04693-4_5.
Texto completoAdamaszek, Anna, Marc P. Renault, Adi Rosén y Rob van Stee. "Reordering Buffer Management with Advice". En Approximation and Online Algorithms, 132–43. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-08001-7_12.
Texto completoChrist, Marie G., Lene M. Favrholdt y Kim S. Larsen. "Online Multi-Coloring with Advice". En Approximation and Online Algorithms, 83–94. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18263-6_8.
Texto completoBöckenhauer, Hans-Joachim, Janosch Fuchs y Walter Unger. "Exploring Sparse Graphs with Advice (Extended Abstract)". En Approximation and Online Algorithms, 102–17. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04693-4_7.
Texto completoBöckenhauer, Hans-Joachim, Dennis Komm y Raphael Wegner. "Call Admission Problems on Grids with Advice (Extended Abstract)". En Approximation and Online Algorithms, 118–33. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04693-4_8.
Texto completoDobrev, Stefan, Rastislav Královič y Richard Královič. "Independent Set with Advice: The Impact of Graph Knowledge". En Approximation and Online Algorithms, 2–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-38016-7_2.
Texto completoBöckenhauer, Hans-Joachim, Dennis Komm, Rastislav Královič, Richard Královič y Tobias Mömke. "On the Advice Complexity of Online Problems". En Algorithms and Computation, 331–40. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-10631-6_35.
Texto completoRenault, Marc P. y Adi Rosén. "On Online Algorithms with Advice for the k-Server Problem". En Approximation and Online Algorithms, 198–210. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29116-6_17.
Texto completoRohatgi, Dhruv. "Near-Optimal Bounds for Online Caching with Machine Learned Advice". En Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, 1834–45. Philadelphia, PA: Society for Industrial and Applied Mathematics, 2020. http://dx.doi.org/10.1137/1.9781611975994.112.
Texto completoAdamy, Udo, Thomas Erlebach, Dieter Mitsche, Ingo Schurr, Bettina Speckmann y Emo Welzl. "Off-line Admission Control for Advance Reservations in Star Networks". En Approximation and Online Algorithms, 211–24. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/978-3-540-31833-0_18.
Texto completoActas de conferencias sobre el tema "Online algorithm with advice"
Zhao, Xiaofan, Xin Li y Hong Shen. "Improved Online Algorithms for One-Dimensional BinPacking with Advice". En 2017 18th International Conference on Parallel and Distributed Computing, Applications and Technologies (PDCAT). IEEE, 2017. http://dx.doi.org/10.1109/pdcat.2017.00042.
Texto completoCreveling, Jessica y Cedric Hagen. "COMBINING A δ13CCARB CORRELATION ALGORITHM AND A REFINED RADIOMETRIC CHRONOLOGY TO ADVANCE PRECAMBRIAN (EDIACARAN) BASIN ANALYSIS". En GSA 2020 Connects Online. Geological Society of America, 2020. http://dx.doi.org/10.1130/abs/2020am-355524.
Texto completoVaidya, Nupur D., Yogesh A. Suryawanshi y Manish Chavan. "Design for enhancing the performance of Advance Encryption Standard algorithm VHDL". En 2016 Online International Conference on Green Engineering and Technologies (IC-GET). IEEE, 2016. http://dx.doi.org/10.1109/get.2016.7916849.
Texto completoGanapathi Subramanian, Sriram, Matthew E. Taylor, Kate Larson y Mark Crowley. "Multi-Agent Advisor Q-Learning (Extended Abstract)". En Thirty-Second International Joint Conference on Artificial Intelligence {IJCAI-23}. California: International Joint Conferences on Artificial Intelligence Organization, 2023. http://dx.doi.org/10.24963/ijcai.2023/776.
Texto completoHikima, Yuya, Yasunori Akagi, Naoki Marumo y Hideaki Kim. "Online Matching with Controllable Rewards and Arrival Probabilities". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/254.
Texto completoNirala, C. K. y P. Saha. "Development of an algorithm for online pulse discrimination in micro-EDM using current and voltage sensors and their comparison". En 2015 IEEE International Advance Computing Conference (IACC). IEEE, 2015. http://dx.doi.org/10.1109/iadcc.2015.7154758.
Texto completoSivagnanam, Amutheezan, Salah Uddin Kadir, Ayan Mukhopadhyay, Philip Pugliese, Abhishek Dubey, Samitha Samaranayake y Aron Laszka. "Offline Vehicle Routing Problem with Online Bookings: A Novel Problem Formulation with Applications to Paratransit". En Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. California: International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/546.
Texto completoCai, Xia. "Vector Autoregressive Weighting Reversion Strategy for Online Portfolio Selection". En Twenty-Ninth International Joint Conference on Artificial Intelligence and Seventeenth Pacific Rim International Conference on Artificial Intelligence {IJCAI-PRICAI-20}. California: International Joint Conferences on Artificial Intelligence Organization, 2020. http://dx.doi.org/10.24963/ijcai.2020/616.
Texto completoZhu, Yada, Jianbo Li, Jingrui He, Brian L. Quanz y Ajay A. Deshpande. "A Local Algorithm for Product Return Prediction in E-Commerce". En Twenty-Seventh International Joint Conference on Artificial Intelligence {IJCAI-18}. California: International Joint Conferences on Artificial Intelligence Organization, 2018. http://dx.doi.org/10.24963/ijcai.2018/517.
Texto completoZenun Franco, Rodrigo. "Online Recommender System for Personalized Nutrition Advice". En RecSys '17: Eleventh ACM Conference on Recommender Systems. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3109859.3109862.
Texto completoInformes sobre el tema "Online algorithm with advice"
Balman, Mehmet y Tevfik Kosar. An Online Scheduling Algorithm with Advance Reservation for Large-Scale Data Transfers. Office of Scientific and Technical Information (OSTI), mayo de 2010. http://dx.doi.org/10.2172/1050437.
Texto completoSantesson, S. y P. Hallam-Baker. Online Certificate Status Protocol Algorithm Agility. RFC Editor, junio de 2011. http://dx.doi.org/10.17487/rfc6277.
Texto completoStreeter, Matthew y Daniel Golovin. An Online Algorithm for Maximizing Submodular Functions. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 2007. http://dx.doi.org/10.21236/ada476748.
Texto completoMeeker, Jessica. Mutual Learning for Policy Impact: Insights from CORE. Shaping Policy and Practice with Intersectional Gender Responsive Evidence (in the Context of Covid-19). Institute of Development Studies (IDS), noviembre de 2021. http://dx.doi.org/10.19088/core.2021.007.
Texto completoSchmidt-Sane, Megan, Tabitha Hrynick, Erica Nelson y Tom Barker. Mutual Learning for Policy Impact: Insights from CORE. Adapting research methods in the context of Covid-19. Institute of Development Studies (IDS), diciembre de 2021. http://dx.doi.org/10.19088/core.2021.008.
Texto completoMeeker, Jessica. Mutual Learning for Policy Impact: Insights from CORE. Sharing Experience and Learning on Approaches to Influence Policy and Practice. Institute of Development Studies (IDS), agosto de 2021. http://dx.doi.org/10.19088/core.2021.005.
Texto completoTidd, Alexander N., Richard A. Ayers, Grant P. Course y Guy R. Pasco. Scottish Inshore Fisheries Integrated Data System (SIFIDS): work package 6 final report development of a pilot relational data resource for the collation and interpretation of inshore fisheries data. Editado por Mark James y Hannah Ladd-Jones. Marine Alliance for Science and Technology for Scotland (MASTS), 2019. http://dx.doi.org/10.15664/10023.23452.
Texto completoGertler, Paul, Sebastian Martinez, Laura B. Rawlings, Patrick Premand y Christel M. J. Vermeersch. Impact Evaluation in Practice: Second Edition. Inter-American Development Bank, septiembre de 2016. http://dx.doi.org/10.18235/0006529.
Texto completoMilek, Karen y Richard Jones, eds. Science in Scottish Archaeology: ScARF Panel Report. Society of Antiquaries of Scotland, septiembre de 2012. http://dx.doi.org/10.9750/scarf.06.2012.193.
Texto completoPaule, Bernard, Flourentzos Flourentzou, Tristan de KERCHOVE d’EXAERDE, Julien BOUTILLIER y Nicolo Ferrari. PRELUDE Roadmap for Building Renovation: set of rules for renovation actions to optimize building energy performance. Department of the Built Environment, 2023. http://dx.doi.org/10.54337/aau541614638.
Texto completo