Literatura académica sobre el tema "Olfactory Ectomesenchymal Stem Cell"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Olfactory Ectomesenchymal Stem Cell".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Olfactory Ectomesenchymal Stem Cell"
Salehi, Majid, Zohreh Bagher, Seyed Kamran Kamrava, Arian Ehterami, Rafieh Alizadeh, Mohammad Farhadi, Masoumeh Falah y Ali Komeili. "Alginate/chitosan hydrogel containing olfactory ectomesenchymal stem cells for sciatic nerve tissue engineering". Journal of Cellular Physiology 234, n.º 9 (31 de enero de 2019): 15357–68. http://dx.doi.org/10.1002/jcp.28183.
Texto completoVeron, Antoine D., Cécile Bienboire-Frosini, Stéphane D. Girard, Kevin Sadelli, Jean-Claude Stamegna, Michel Khrestchatisky, Jennifer Alexis et al. "Syngeneic Transplantation of Olfactory Ectomesenchymal Stem Cells Restores Learning and Memory Abilities in a Rat Model of Global Cerebral Ischemia". Stem Cells International 2018 (2018): 1–10. http://dx.doi.org/10.1155/2018/2683969.
Texto completoGirard, Stéphane D., Isabelle Virard, Emmanuelle Lacassagne, Jean-Michel Paumier, Hanae Lahlou, Françoise Jabes, Yves Molino et al. "From Blood to Lesioned Brain: An In Vitro Study on Migration Mechanisms of Human Nasal Olfactory Stem Cells". Stem Cells International 2017 (2017): 1–17. http://dx.doi.org/10.1155/2017/1478606.
Texto completoSimorgh, Sara, Peiman Brouki Milan, Maryam Saadatmand, Zohreh Bagher, Mazaher Gholipourmalekabadi, Rafieh Alizadeh, Ahmad Hivechi, Zohreh Arabpour, Masoud Hamidi y Cédric Delattre. "Human Olfactory Mucosa Stem Cells Delivery Using a Collagen Hydrogel: As a Potential Candidate for Bone Tissue Engineering". Materials 14, n.º 14 (13 de julio de 2021): 3909. http://dx.doi.org/10.3390/ma14143909.
Texto completoDelorme, Bruno, Emmanuel Nivet, Julien Gaillard, Thomas Häupl, Jochen Ringe, Arnaud Devèze, Jacques Magnan et al. "The Human Nose Harbors a Niche of Olfactory Ectomesenchymal Stem Cells Displaying Neurogenic and Osteogenic Properties". Stem Cells and Development 19, n.º 6 (junio de 2010): 853–66. http://dx.doi.org/10.1089/scd.2009.0267.
Texto completoFöldes, Anna, Hajnalka Reider, Anita Varga, Krisztina S. Nagy, Katalin Perczel-Kovach, Katalin Kis-Petik, Pamela DenBesten, András Ballagi y Gábor Varga. "Culturing and Scaling up Stem Cells of Dental Pulp Origin Using Microcarriers". Polymers 13, n.º 22 (15 de noviembre de 2021): 3951. http://dx.doi.org/10.3390/polym13223951.
Texto completoVanHook, Annalisa M. "Inflammation induces stem cell quiescence". Science Signaling 12, n.º 605 (29 de octubre de 2019): eaaz9665. http://dx.doi.org/10.1126/scisignal.aaz9665.
Texto completoGe, Lite, Miao Jiang, Da Duan, Zijun Wang, Linyu Qi, Xiaohua Teng, Zhenyu Zhao et al. "Secretome of Olfactory Mucosa Mesenchymal Stem Cell, a Multiple Potential Stem Cell". Stem Cells International 2016 (2016): 1–16. http://dx.doi.org/10.1155/2016/1243659.
Texto completoFletcher, Russell B., Diya Das, Levi Gadye, Kelly N. Street, Ariane Baudhuin, Allon Wagner, Michael B. Cole et al. "Deconstructing Olfactory Stem Cell Trajectories at Single-Cell Resolution". Cell Stem Cell 20, n.º 6 (junio de 2017): 817–30. http://dx.doi.org/10.1016/j.stem.2017.04.003.
Texto completoLee, Jung-Hwan y Seog-Jin Seo. "Biomedical Application of Dental Tissue-Derived Induced Pluripotent Stem Cells". Stem Cells International 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/9762465.
Texto completoTesis sobre el tema "Olfactory Ectomesenchymal Stem Cell"
Ould-Yahoui, Adlane. "Le système MMP/TIMP dans la croissance neuritique et la motilité des cellules souches de la muqueuse olfactive". Thesis, Aix-Marseille 2, 2011. http://www.theses.fr/2011AIX20672.
Texto completoThe matrix metalloproteinases (MMPs) belong to a growing family of Zn2+-dependent endopeptidases, secreted or membrane-bound (MT-MMP), which play a fundamental role in the cell signalling. The activity of the MMPs is regulated by their endogenous inhibitors, the tissue inhibitors of MMPs (TIMPs). The MMP / TIMP system regulates the cell-cell and cell-extracellular matrix interactions and modulates the cellular motility through the cleavage of protein components of the extracellular matrix, as well during physiological and pathological conditions.Our results suggest that TIMP-1 is implicated in the modulation of the neurite outgrowth and morphology of cortical neurons through the inhibition at least in part, of MMP-2 and not MMP-9. Afterward, we study of the system MMP / TIMP in the migration of the stem cells of olfactory ectomesenchymal stem cells (OE-MSCs). We show that gelatinases MMP-2 and MMP-9 as well as MT1-MMP, are involved in OE-MSCs migration. We also show that gelatinases are probably involved in neurotrophic properties of the OE-MSCs and olfactory ensheathing cells.Altogether, these results provide new evidences on the role of MMP/TIMP system in central nervous system post-lesional processes
Patel, Nirmal Praful School of Medicine UNSW. "Olfactory progenitor cell transplantation into the mammalian inner ear". Awarded by:University of New South Wales. School of Medicine, 2006. http://handle.unsw.edu.au/1959.4/26180.
Texto completoReiter, Allison R. "Role of dietary zinc deficiency in adult neuronal stem cell proliferation in the olfactory bulb". Tallahassee, Fla. : Florida State University, 2008. http://purl.fcla.edu/fsu/lib/digcoll/undergraduate/honors-theses/341805.
Texto completoAdvisor: Cathy W. Levenson, PhD., Florida State University, College of Human Sciences, Dept. of Nutrition, Food and Exercise Sciences. Includes bibliographical references.
Caremoli, F. "PURIFICATION, CHARACTERIZATION AND CULTURE OF ENSHEATHING CELLS FROM HUMAN OLFACTORY MUCOSA BIOPSIES". Doctoral thesis, Università degli Studi di Milano, 2015. http://hdl.handle.net/2434/335140.
Texto completoMomma, Stefan. "Neural stem cells and their contribution to neurogenesis in the adult mammalian brain /". Stockholm : Karolinska institutet, 2002. http://diss.kib.ki.se/2002/91-7349-324-4/.
Texto completoOliver, Joe, Cuihong Phd Jia y Theodoor Phd Hagg. "Inhibition of focal adhesion kinase promotes adult olfactory stem cell self-renewal and neuroregeneration via ciliary neurotrophic factor". Digital Commons @ East Tennessee State University, 2018. https://dc.etsu.edu/asrf/2018/schedule/97.
Texto completoHawkins, Sara Joy. "The timing of regeneration in the amphibian olfactory system". Master's thesis, Universidade de Aveiro, 2015. http://hdl.handle.net/10773/15444.
Texto completoComprehending the mechanisms that make lifelong neurogenesis possible has a clear interest for the better understanding of the basic principles that govern cellular and molecular interactions in the nervous system, as well as a relevant clinical interest. The limited ability of the central nervous system to generate new neurons in order to replace those that have been lost is a formidable obstacle to recovery from neuronal damage caused by injury or neurodegenerative disease. The olfactory system (OS) is an ideal system to study the process of neuronal recovery after injury, as it is known for its lifelong capacity to replenish cells lost during natural turnover, as well as its remarkable ability to regenerate after severe lesion. The olfactory epithelium (OE) shows neurogenesis throughout life. Newly differentiated olfactory receptor neurons (ORNs) are continuously reintegrated into an existing circuitry to maintain the sense of smell. The aim of this thesis is to describe the morphological and functional alterations that occur over time in the OS of larval Xenopus laevis, after transection of the olfactory nerve (ON). Results obtained using immunohistochemistry essays, as well as sensory neuron labeling and calcium imaging techniques, indicate that ORN cell death reaches its peak 48 hours after transection, and that proliferating stem cells found in the basal cell layer of the OE are quickly upregulated after lesion. Supporting cells seem to maintain both morphological and functional integrity after transection of the ON. The OE recovers its original morphological structure 1 week after transection, at which time the first axons reach the olfactory bulb (OB) and begin the process of reinnervation. Spontaneous activity of mitral/tufted cells occurs in the OB during the first weeks after transection but no odor-induced activity is observed. After 3-4 weeks glomerular responses were observed in some animals upon application of stimulus, but the response and glomerular morphology are clearly altered as compared to control. After 6-7 weeks responses seem to have fully recovered, indicating that the OS of larval X. laevis recovers morphologically and functionally 6-7 weeks after ON transection.
O estudo dos mecanismos responsáveis pela neuro-regeneração tem um marcado interesse para a compreensão dos princípios básicos que governam as interações celulares e moleculares no sistema nervoso, bem como um interesse clínico relevante. A limitada capacidade do sistema nervoso central para dar origem a novos neurónios é um obstáculo formidável para a recuperação do sistema após lesão neuronal ou doença neurodegenerativa. O sistema olfativo é um sistema ideal para o estudo do processo de recuperação após lesão neuronal, pois é conhecido no mundo científico pela sua capacidade contínua e vitalícia para repor células perdidas durante a renovação celular natural, bem como a sua notável capacidade para regenerar após uma lesão grave. O epitélio olfativo apresenta a capacidade para dar origem a novos neurónios ao longo de toda a vida. Neurónios sensoriais olfativos diferenciados são continuamente reintegrados num circuito já existente, mantendo assim o sentido do olfato. O objetivo desta tese é descrever as alterações morfológicas e funcionais que ocorrem ao longo do tempo no sistema olfativo de Xenopus laevis em estado larvar, após o corte do nervo olfativo. Os resultados obtidos através do uso de ensaios de imunohistoquímica, bem como técnicas de marcação neuronal sensorial e de imagiologia de cálcio, indicam que a morte celular na população de neurónios sensoriais olfativos atinge o seu máximo 48 horas após a lesão, e que células estaminais encontradas na camada basal do epitélio olfativo são positivamente reguladas após lesão e proliferam rapidamente. Células de suporte parecem manter tanto a integridade morfológica como funcional após o corte do nervo olfativo. O epitélio olfativo recupera a sua estrutura morfológica inicial 1 semana após a lesão, momento em que os primeiros axónios atingem o bolbo olfativo e começam o processo de reintegração. Ocorre atividade espontânea das células mitrais/tufados do bolbo olfativo durante as primeiras semanas após a lesão, mas nenhuma atividade induzida por estímulo com odor foi observada. Depois de 3-4 semanas, atividade glomerular foi observada em alguns animais após a aplicação de estímulos, mas a resposta e morfologia glomerular foram claramente alteradas em relação ao controlo. Depois de 6-7 semanas as respostas parecem ter recuperado totalmente, indicando que o sistema olfativo de X. laevis em estado larvar recupera morfológica e funcionalmente 6-7 semanas após o corte do nervo olfativo.
Bianco, John I. "Stem Cells and Ensheathing Cells from the Nasal Olfactory Mucosa: a Tool for the Repair of the Damaged Spinal Cord". Thesis, Griffith University, 2008. http://hdl.handle.net/10072/368098.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
Eskitis Institute for Cell and Molecular Therapies
Science, Environment, Engineering and Technology
Full Text
Orechio, Dailiany. "Caracterização morfológica e celular da zona subventricular e da corrente rostral migratória em encéfalos de fetos caninos". Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/10/10132/tde-29092016-112302/.
Texto completoNeural precursors originated in the subventricular zone (SVZ) of some animal species have a migration route destined for main olfactory bulb (MOB), where migrants neuroblasts differentiate into olfactory interneurons. This migratory stream is maintained in adulthood. Understanding how it is organized in fetal age is essential for general understanding and establishment of new cell therapies. The aim of this study is characterize the cellular composition and morphological organization of the SVZ and rostral migratory stream (RMS) of brains of canine fetuses. The SVZ, RMS and MOB was obtained from canine fetuses of the approximately 57 gestacional days-old. The tissue was analyzed by Nissl staining and by immunohistochemical methods for double labelling with doublecortin (DCX), transcription factor SOX2, glial fibrillary acid protein (GFAP), calbindin (CALB), calretinin (CALR) and tyrosinehydroxylase (TH). Semiquantitative analysis of immunoreactivity and quantitative analysis of colocalization were realized, besides ultrastructural analysis by electron microscopy. The results show that in dorsal SVZ, DCX immunoreactive cells were found along the ventricular wall, arranged tangentially and lines of SOX2 cells were also found in the same orientation. The GFAP immunostaining is stronger in dorsal SVZ with tangentially directed fibers near the lateral ventricle and radially oriented fibers toward the cortex. The RMS of dog fetus begins at anterior SVZ and follows caudally around the head of the caudate nucleus and vertically descends to bend rostrally into the MOB, where it ends in the granular cell layer (GCL).The RMS have SOX2 positive cells on entire length, showing a homogeneous appearance and high cell density. There is no positive CALB cells or CALR in any region of the SVZ and RMS. The results of the MOB show that the glomerular layer (GL) there were cells immunoreactive to CALR, TH, SOX2 and GFAP. In the external plexiforme layer (EPL) there were immunoreactive cells for CALR, CALB, SOX2 and GFAP and, the GCL, the prevalence is higher for CALR neurons, SOX2-ir and GFAP-ir cells. In colocalization analysis, they were found a some CALR positive neurons in GL that colabeled with SOX2 cells and a low colocalization of TH neurons and SOX2 cells. In EPL, was observed a low colocalization number of CALR and CALB neurons and in GCL, SOX2 cells colabeled with CALR neurons. The conclusions show that the dog fetus has a RMS directed to the MOB, with cellular immunoreactivity for DCX, SOX2 and GFAP in the ZSV and RMS and cellular immunoreactivity for SOX2 CALB, CALR, TH and GFAP in main olfactory bulb layers
Malik, Astha. "Circadian Clocks in Neural Stem Cells and their Modulation of Adult Neurogenesis, Fate Commitment, and Cell Death". Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1434986257.
Texto completoLibros sobre el tema "Olfactory Ectomesenchymal Stem Cell"
Kempermann, MD, Gerd. Adult Neurogenesis 2. Oxford University Press, 2012. http://dx.doi.org/10.1093/med/9780199729692.001.0001.
Texto completoCapítulos de libros sobre el tema "Olfactory Ectomesenchymal Stem Cell"
Franceschini, Valeria, Simone Bettini, Riccardo Saccardi y Roberto P. Revoltella. "Stem Cell Transplantation Supports the Repair of Injured Olfactory Neuroepithelium After Permanent Lesion". En Trends in Stem Cell Biology and Technology, 283–97. Totowa, NJ: Humana Press, 2009. http://dx.doi.org/10.1007/978-1-60327-905-5_16.
Texto completoAndrianov, Viacheslav V., Guzel G. Yafarova, Julia P. Tokalchik, Aleksandra S. Zamaro, Liya V. Bazan, Vladimir A. Kulchitsky y Khalil L. Gainutdinov. "Effects of Perineural Stem Cell Implantation on Motor Activity and Content of NO and Copper in the Olfactory System After Brain Ischemia". En Advances in Cognitive Research, Artificial Intelligence and Neuroinformatics, 486–95. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-71637-0_56.
Texto completoLubis, R., D. Munir, S. Nursiah y H. R. Y. Herwanto. "The Correlation Between Smoking and Olfactory Function Using Sniffin’ Sticks Test". En Stem Cell Oncology, 91–94. CRC Press, 2018. http://dx.doi.org/10.1201/9781351190152-20.
Texto completoOrtuno-Sahagun, Daniel, Argelia E., Antoni Camins y Merce Pallas. "Embryonic Neural Stem Cell Differentiation to Aldynoglia Induced by Olfactory Bulb Ensheathing Cell-Conditioned Medium". En Embryonic Stem Cells: The Hormonal Regulation of Pluripotency and Embryogenesis. InTech, 2011. http://dx.doi.org/10.5772/15239.
Texto completoMackay-Sim, A. "Olfactory mucosa: neural stem and progenitor cells for nervous system repair and cell models of brain disease". En Progenitor and Stem Cell Technologies and Therapies, 309–30. Elsevier, 2012. http://dx.doi.org/10.1533/9780857096074.3.309.
Texto completoActas de conferencias sobre el tema "Olfactory Ectomesenchymal Stem Cell"
Volkenstein, S., C. Sengstock, M. Rövekamp y S. Dazert. "Olfactory stem cells - a promising autologous approach to cell based therapies". En 100 JAHRE DGHNO-KHC: WO KOMMEN WIR HER? WO STEHEN WIR? WO GEHEN WIR HIN? Georg Thieme Verlag KG, 2021. http://dx.doi.org/10.1055/s-0041-1728954.
Texto completoMarei, Hany y Asmaa Althani. "Human Olfactory Bulb Neural Stem Cell Based Therapy for CNS Traumatic and Neurodegenerative Diseases". En Qatar Foundation Annual Research Conference Proceedings. Hamad bin Khalifa University Press (HBKU Press), 2016. http://dx.doi.org/10.5339/qfarc.2016.hbpp1046.
Texto completoSengstock, C., A. Neubaur, V. Stefan, B. Pintea, S. Dazert, R. Martínez-Olivera, T. Schildhauer y M. Köller. "Behaviour of isolated Olfactory Stem Cells within Cerebrospinal Fluid: a Prerequisite for Cell Therapy after Spinal Cord Injury". En Deutscher Kongress für Orthopädie und Unfallchirurgie. Georg Thieme Verlag KG, 2020. http://dx.doi.org/10.1055/s-0040-1717436.
Texto completo