Siga este enlace para ver otros tipos de publicaciones sobre el tema: Offshore structures.

Artículos de revistas sobre el tema "Offshore structures"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Offshore structures".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Clauss, G., E. Lehmann, C. Ostergaard, and Carlos Guedes Soares. "Offshore Structures." Journal of Offshore Mechanics and Arctic Engineering 117, no. 4 (November 1, 1995): 298–99. http://dx.doi.org/10.1115/1.2827238.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Pérez Fernández, Rodrigo, and Miguel Lamas Pardo. "Offshore concrete structures." Ocean Engineering 58 (January 2013): 304–16. http://dx.doi.org/10.1016/j.oceaneng.2012.11.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Lyons, G. J. "Mobile offshore structures." Engineering Structures 11, no. 3 (July 1989): 202. http://dx.doi.org/10.1016/0141-0296(89)90010-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kouichirou, Anno, and Takeshi Nishihata. "DEVELOPMENT ON OFFSHORE STRUCTURE." Coastal Engineering Proceedings 1, no. 32 (January 31, 2011): 50. http://dx.doi.org/10.9753/icce.v32.structures.50.

Texto completo
Resumen
Authors have developed the offshore structure for control of sea environment named S-VHS construction
 method, which is composed of the sloping top slit-type caisson and steel pipe piles. The sloping top form enables to
 realize the remarkable reduction of wave force exerted on the dike body compared with the conventional one.
 In this paper, hydraulic feature with wave dissipation ability and wave force reduction effect are verified
 through some hydraulic experiments. After the preliminary study for the valid structure form, reflection and
 transmission ability for the selected structure models were tested with the hydraulic experiment relevant to the ratio of
 caisson width and wave length. Finally, wave force experiment was executed and it revealed the performance of wave
 force reduction. Based on the results, we proposed specific design wave force formula for S-VHS construction method.
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

MIYAZAKI, Tatsuo. "Ships and Offshore Structures." JOURNAL OF THE JAPAN WELDING SOCIETY 77, no. 5 (2008): 461–64. http://dx.doi.org/10.2207/jjws.77.461.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

YAMASHITA, Yasuo. "Ships and Offshore Structures." JOURNAL OF THE JAPAN WELDING SOCIETY 79, no. 5 (2010): 462–65. http://dx.doi.org/10.2207/jjws.79.462.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Tanner, R. G. "Design in offshore structures." Canadian Journal of Civil Engineering 12, no. 1 (March 1, 1985): 238. http://dx.doi.org/10.1139/l85-025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Ghosh, S. K. "Buckling of offshore structures." Journal of Mechanical Working Technology 14, no. 3 (June 1987): 386–87. http://dx.doi.org/10.1016/0378-3804(87)90023-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Rhodes, J. "Buckling of offshore structures." Thin-Walled Structures 3, no. 1 (January 1985): 85. http://dx.doi.org/10.1016/0263-8231(85)90021-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bulson, P. S. "Buckling of offshore structures." Applied Ocean Research 7, no. 2 (April 1985): 115. http://dx.doi.org/10.1016/0141-1187(85)90044-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Taylor, R. Eatock. "Dynamics of offshore structures." Engineering Structures 7, no. 3 (July 1985): 214–15. http://dx.doi.org/10.1016/0141-0296(85)90054-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Long, A. E. "Construction of offshore structures." Engineering Structures 10, no. 2 (April 1988): 141. http://dx.doi.org/10.1016/0141-0296(88)90041-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Faulkner, D. "Hydrodynamics of offshore structures." Marine Structures 1, no. 1 (January 1988): 81–83. http://dx.doi.org/10.1016/0951-8339(88)90012-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Yang, Ray-Yeng, Hsin-Hung Chen, Hwung-Hweng Hwung, Wen-Pin Jiang, and Nian-Tzu Wu. "EXPERIMENTAL STUDY ON THE LOADING AND SCOUR OF THE JACKET TYPE OFFSHORE WIND TURBINE FOUNDATION." Coastal Engineering Proceedings 1, no. 32 (January 21, 2011): 25. http://dx.doi.org/10.9753/icce.v32.structures.25.

Texto completo
Resumen
A 1:36 scale model tests were carried out in the Medium Wave Flume (MWF) and Near-shore Wave Basin (NSWB) at the Tainan Hydraulics Laboratory (THL) with the jacket type offshore wind turbine foundation located in the test area. The loading of typhoon wave with current on the jacket type offshore wind turbine foundation was investigated in the MWF with fixed bed experiment. Meanwhile, the scour around the jacket type offshore wind turbine foundation exposed to wave and current was conducted in the NSWB with the moveable bed experiment. Two locations (water depth 12m and 16m) of the foundations are separately simulated in this study. Based on the analysis from the former NSWB experimental results, the suitable scour protection of a four-layer work around the foundation is also proposed to the impact of scour. Finally, a four-layer scour protection is tested and found to be effective in preventing scour around jacket type foundation of offshore wind turbines at water depth 12m and 16m.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Damilola, Oluwafemi John, Elakpa Ada Augustine, and Nwaorgu Obioima Godspower. "Fatigue Evaluation of Offshore Steel Structures Considering Stress Concentration Factor." International Journal of Research and Review 8, no. 10 (October 21, 2021): 307–13. http://dx.doi.org/10.52403/ijrr.20211041.

Texto completo
Resumen
The installation of offshore structures and facilities in the marine environment, usually for the production and transmission of oil, gas exploration, electricity, and other natural resources is referred to as offshore construction. Since offshore structures are subjected to changing threats to the environment year-round. Fatigue behavior prediction noticed on these structures should be considered during the design stage. Fatigue is one of the failure mechanisms of offshore steel structures, and it must be investigated properly during system design. The fatigue analysis of offshore structures under drag wave force, total wave force, total moment about the sea bed, and other variables are reviewed thoroughly. The structure's dynamic response becomes a critical aspect in the whole design process. The fatigue analysis was carried out using MATLAB software, material properties of the offshore structure, and wave spectrum characteristics in this study. This study shows the JONSWAP spectrum and stress concentration analysis prediction. The offshore support structure that is predicted during the design phase will help to keep the stress concentration factor below the fatigue threshold and anticipate safe life design, according to the results of the fatigue study. The fatigue performances of tripod and jacket steel support structures in intermediate waters depth are compared in this project (20-50 m). The North Atlantic Ocean is used as a reference site, with a sea depth of 45 meters. The tripod and jacket support structures will be designed by using current industry standards. Keywords: [Fatigue evaluation, North Atlantic Ocean and Failure].
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Hossin, M., and H. Marzouk. "Crack spacing for offshore structures." Canadian Journal of Civil Engineering 35, no. 12 (December 2008): 1446–54. http://dx.doi.org/10.1139/l08-073.

Texto completo
Resumen
The main focus of this investigation is directed toward the examination of crack-spacing expressions suitable for offshore concrete structure applications. Offshore structures are unique structures that are constantly exposed to harsh environmental conditions, including exposure to seawater and sea spray. The splash zone of an offshore structure is the section of the platform that is the most exposed to both a harsh marine environment and seawater. The design of offshore structures is controlled by mandatory design codes to ensure structural safety and integrity. Most of the available expressions for crack spacing were developed for building structures using normal-strength concrete and normal concrete cover. However, offshore structures are built using high-strength concrete with a thick concrete cover. Very little information is published on the crack analysis of high-strength concrete with a thick concrete cover for offshore applications. An experimental testing program was designed to examine the effects of concrete cover and the bar spacing of normal- and high-strength concrete on crack spacing. The different code expressions are evaluated with respect to the experimental results.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Denney, Dennis. "Onshore Decommissioning of Offshore Structures." Journal of Petroleum Technology 50, no. 04 (April 1, 1998): 70–71. http://dx.doi.org/10.2118/0498-0070-jpt.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Marshall, Peter W. "Interdisciplinary Aspects of Offshore Structures." Marine Technology Society Journal 39, no. 3 (September 1, 2005): 99–115. http://dx.doi.org/10.4031/002533205787442530.

Texto completo
Resumen
While some institutions treat Ocean Engineering as a single discipline, much of the progress in this area has been brought about by the interdisciplinary collaboration of experts in different areas, such as:Structural engineering Mineral resourcesOcean energy Offshore economic potentialRemotely operated vehicles Marine law & policyDynamic positioning Marine educationMoorings Marine materialsSeafloor engineering Physical oceanography/meteorologyLarge offshore platforms are usually designed by teams of engineers. Although the lead engineer often may be a structural engineer, many elements of the other technologies are involved. This paper is an update to earlier summaries by Marshall (1980, 1993), but retains many of the pre-Internet classic references. Papers from the Offshore Technology Conference are listed separately, and cited by OTC number.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Ole Olsen, T. "Recycling of offshore concrete structures." Structural Concrete 2, no. 3 (September 2001): 169–73. http://dx.doi.org/10.1680/stco.2001.2.3.169.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Bertram, Volker. "Flow Simulations for Offshore Structures." Ship Technology Research 57, no. 1 (January 2010): 74–78. http://dx.doi.org/10.1179/str.2010.57.1.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Brandi, R., and P. Rossetto. "Fatigue design of offshore structures." Welding International 1, no. 12 (January 1987): 1155–61. http://dx.doi.org/10.1080/09507118709452166.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Norman, J. N., B. N. Ballantine, J. A. Brebner, B. Brown, S. J. Gauld, J. Mawdsley, C. Roythorne, M. J. Valentine, and S. E. Wilcock. "Medical evacuations from offshore structures." Occupational and Environmental Medicine 45, no. 9 (September 1, 1988): 619–23. http://dx.doi.org/10.1136/oem.45.9.619.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Molin,, B., and JH Ferziger,. "Hydrodynamique des Structures Offshore. (French)." Applied Mechanics Reviews 56, no. 2 (March 1, 2003): B29. http://dx.doi.org/10.1115/1.1553447.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Konovessis, Dimitris, Kie Hian Chua, and Dracos Vassalos. "Stability of floating offshore structures." Ships and Offshore Structures 9, no. 2 (January 17, 2013): 125–33. http://dx.doi.org/10.1080/17445302.2012.747270.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Chen, W. F., D. J. Han, and H. Saunders. "Tubular Members in Offshore Structures." Journal of Vibration and Acoustics 111, no. 4 (October 1, 1989): 496–98. http://dx.doi.org/10.1115/1.3269893.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Froud, S. V. "Chameleon trusts in offshore structures." Trusts & Trustees 11, no. 4 (March 1, 2005): 27–29. http://dx.doi.org/10.1093/tandt/11.4.27.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Redwood, Richard G. "Tubular members in offshore structures." Canadian Journal of Civil Engineering 13, no. 3 (June 1, 1986): 399–400. http://dx.doi.org/10.1139/l86-058.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Liaw, Chih‐Young. "Subharmonic Response of Offshore Structures." Journal of Engineering Mechanics 113, no. 3 (March 1987): 366–77. http://dx.doi.org/10.1061/(asce)0733-9399(1987)113:3(366).

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Anderson, M. R. "Nondestructive testing of offshore structures." NDT International 20, no. 1 (February 1987): 17–21. http://dx.doi.org/10.1016/0308-9126(87)90368-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Anderson, M. "Nondestructive testing of offshore structures." NDT & E International 20, no. 1 (February 1987): 17–21. http://dx.doi.org/10.1016/0963-8695(87)90247-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Chen, W. F., and I. S. Sohal. "Cylindrical members in offshore structures." Thin-Walled Structures 6, no. 3 (January 1988): 153–285. http://dx.doi.org/10.1016/0263-8231(88)90010-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Willemsen, E. "Aerodynamic aspects of offshore structures." Journal of Wind Engineering and Industrial Aerodynamics 44, no. 1-3 (October 1992): 2511–22. http://dx.doi.org/10.1016/0167-6105(92)90042-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Harding, J. E. "Integrity of offshore structures—3." Journal of Constructional Steel Research 11, no. 2 (January 1988): 143–44. http://dx.doi.org/10.1016/0143-974x(88)90048-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Ellinas, Charles P. "Floating Structures and Offshore Operations." Applied Ocean Research 11, no. 2 (April 1989): 112. http://dx.doi.org/10.1016/0141-1187(89)90014-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Faltinsen, O. M. "Wave Loads on Offshore Structures." Annual Review of Fluid Mechanics 22, no. 1 (January 1990): 35–56. http://dx.doi.org/10.1146/annurev.fl.22.010190.000343.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Rogers, L. M. "Monitoring fatigue in offshore structures." NDT & E International 25, no. 6 (December 1992): 302. http://dx.doi.org/10.1016/0963-8695(92)90760-e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Harleman, Donald R. F., William C. Nolan, and Vernon C. Honsinger. "DYNAMIC ANALYSIS OF OFFSHORE STRUCTURES." Coastal Engineering Proceedings 1, no. 8 (January 29, 2011): 28. http://dx.doi.org/10.9753/icce.v8.28.

Texto completo
Resumen
Analytical procedures are presented for calculation of the dynamic displacements of fixed offshore structures in oscillatory waves. The structure considered has four legs in a square configuration with waves impinging normal to one side; however, the procedures are general and may be applied to other configurations and wave directions. The horizontal displacement of the deck is determined as a function of time by application of vibration theory for a damped, spring-mass system subject to a harmonic force. The instantaneous wave force on each leg is composed of a hydrodynamic drag component and an inertial component as in the usual "statical" wave force analysis. The wave force expression is approximated by a Fourier series which permits calculation of the platform displacement by superposition of solutions of the equation of motion for the platform. Depending on the ratio of the wave frequency to the natural frequency of the platform, the structural stresses may be considerably high* than those found by methods which neglect the elastic behavior of the structure. The highest wave to be expected in a given locality is not necessarily the critical design wave. Maximum displacements and structural stresses may occur for smaller waves having periods producing a resonant response of the platform. Displacement measurements in a wave tank using a platform constructed of plastic are presented to show the validity of the analytical method. Both small and finite amplitude waves are used over a wide range of frequency ratios. A digital computer program (7090 FORTRAN) is used for the displacement calculation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Dharmavasan, S. "Tubular members in offshore structures." Engineering Structures 8, no. 3 (July 1986): 215–16. http://dx.doi.org/10.1016/0141-0296(86)90056-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Eatock Taylor, R. "Floating structures and offshore operations." Engineering Structures 11, no. 4 (October 1989): 290. http://dx.doi.org/10.1016/0141-0296(89)90048-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Gates, Andrew R., and Daniel O. B. Jones. "Ecological role of offshore structures." Nature Sustainability 7, no. 4 (April 24, 2024): 383–84. http://dx.doi.org/10.1038/s41893-024-01316-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Cole, Kerry. "Offshore Oil and Gas Structures." Materials Performance 63, no. 4 (April 1, 2024): 5. https://doi.org/10.5006/mp2024_63_4-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Cole, Kerry. "Offshore Oil and Gas Structures." Materials Performance 64, no. 4 (April 1, 2025): 6. https://doi.org/10.5006/mp2025_64_4-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Amaechi, Chiemela Victor, Ahmed Reda, Harrison Obed Butler, Idris Ahmed Ja’e, and Chen An. "Review on Fixed and Floating Offshore Structures. Part I: Types of Platforms with Some Applications." Journal of Marine Science and Engineering 10, no. 8 (August 5, 2022): 1074. http://dx.doi.org/10.3390/jmse10081074.

Texto completo
Resumen
Diverse forms of offshore oil and gas structures are utilized for a wide range of purposes and in varying water depths. They are designed for unique environments and water depths around the world. The applications of these offshore structures require different activities for proper equipment selection, design of platform types, and drilling/production methods. This paper will provide a general overview of these operations as well as the platform classifications. In this paper, a comprehensive review is conducted on different offshore petroleum structures. This study examines the fundamentals of all types of offshore structures (fixed and floating), as well as the applications of these concepts for oil exploration and production. The study also presents various design parameters for state-of-the-art offshore platforms and achievements made in the industry. Finally, suitable types of offshore platforms for various water depths are offered for long-term operations. An extension of this study (Part II) covers sustainable design approaches and project management on these structures; this review helps designers in understanding existing offshore structures, and their uniqueness. Hence, the review also serves as a reference data source for designing new offshore platforms and related structures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Juma, Ibrahim Mohammad, Sankarbabu Karanam, and Alya Abdulrahim Al Harmoudi. "APPLICATION OF COMPOSITE GROYNES IN STABILIZING DUBAI BEACHES." Coastal Engineering Proceedings, no. 36 (December 30, 2018): 8. http://dx.doi.org/10.9753/icce.v36.structures.8.

Texto completo
Resumen
The increase in demand for waterfront living has led to the development of large-scale offshore reclamation projects - The Palm Jumeirah, The World etc., rapidly transforming the coastal zone of Dubai. Development of such offshore islands have interfered with the coastal processes causing reorientation of shorelines at several stretches of Dubai coast (Mangor et al 2008). Regular beach nourishment programs to maintain the required minimum beach width for recreational activities was found to be ineffective due to non-availability of beach quality sand and environmental impacts of dredging and sand shifting operations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Kashima, Hiroaki, and Haruo Yoneyama. "WAVE-INDUCED IMPACT ON MONOPILE-TYPE OFFSHORE WIND TURBINE RESPONSE." Coastal Engineering Proceedings, no. 38 (May 29, 2025): 22. https://doi.org/10.9753/icce.v38.structures.22.

Texto completo
Resumen
The offshore wind turbine industry has been actively working toward the goal of carbon neutrality by 2050. Technological advancements in large-scale fixed-bottom offshore wind turbines (OWTs) have significantly improved power generation and economic efficiency. However, the dynamic response characteristics of these turbines in coastal waters, especially in the presence of Hub waves, remain largely unknown. In this study, we conducted a series of numerical simulations using a wind- wave load coupled analysis method to investigate the impact of waves on the dynamic response of a 15MW monopile-type OWT in wind and waves.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Tomasicchio, Giuseppe Roberto, Elvira Armenio, Felice D'Alessandro, Nuno Fonseca, Spyros A. Mavrakos, Valery Penchev, Holger Schuttrumpf, Spyridon Voutsinas, Jens Kirkegaard, and Palle M. Jensen. "DESIGN OF A 3D PHYSICAL AND NUMERICAL EXPERIMENT ON FLOATING OFF-SHORE WIND TURBINES." Coastal Engineering Proceedings 1, no. 33 (December 14, 2012): 67. http://dx.doi.org/10.9753/icce.v33.structures.67.

Texto completo
Resumen
The knowledge of the behavior of floating offshore wind turbines (W/T) under wave and/or wind action remains one of the most difficult challenges in offshore engineering which is mostly due to the highly non-linear response of the structure. The present study describes the design process of a 3D physical experiment to investigate the behavior of the most promising structure technology of floating W/T: spar buoy (SB) and tension leg platform (TLP) under different meteo conditions. In order to properly design the two W/T models, the following topics have been analyzed: mooring lines, mass distribution, appropriate scaling factor and data relative to the geometrical characteristics, wave basin dimensions and wind and waves conditions. In addition, the Smoothed Particle Hydrodynamics method (SPH) (Monaghan 1994) has been considered to simulate the 3D behavior of a floating offshore W/T. In particular, the SPH, calibrated and verified on the basis of the experimental observations, may represent a reliable tool for preliminary test of changes in the floater geometry.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Kashima, Hiroaki, and Haruo Yoneyama. "DYNAMIC RESPONSE OF 5, 10 AND 15 MW FIXED-BOTTOM OFFSHORE WIND TURBINES IN WIND AND WAVES." Coastal Engineering Proceedings, no. 37 (October 2, 2023): 54. http://dx.doi.org/10.9753/icce.v37.structures.54.

Texto completo
Resumen
In recent years, the offshore wind turbine industry has become more active in response to the movement toward carbon neutrality by 2050, and technological development of large-scale offshore wind turbines (OWTs) with improved power generation efficiency and high economic efficiency has progressed. However, little is known about their response characteristics and the relationship between the scale of power generation and the response characteristics of OWTs. The purpose of this study is to clarify the differences in the dynamic response of fixed-bottom OWTs with different power generation scales in wind and waves through load-coupled analysis.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

TUDORACHE, VALENTIN-PAUL, LAZAR AVRAM, and NICULAE-NAPOLEON ANTONESCU. "Aspects on offshore drilling process in deep and very deep waters." Journal of Engineering Sciences and Innovation 5, no. 12 (June 3, 2020): 157–72. http://dx.doi.org/10.56958/jesi.2020.5.2.7.

Texto completo
Resumen
"Offshore is a broad concept and therefore in this article offshore refers to drilling wells of oil and gas in the hydrocarbons deposits located deep from the seabed. Oil and gas is drilled wells with help of different offshore structures, for example rigs and vessels. Offshore drilling is a complex process where a borehole is drilled through the seabed. Of course, offshore refers to energy activity located at a distance from the shore. Oil and natural gas is located below the bedrock, which makes it difficult to extract them. A limited amount of inland oil has driven oil industry to the seas to find more oil deposits. There are high financial markets in the offshore industry and that is why much money is being invested in new offshore structures all around the world. Offshore structures are constructed for many different purposes worldwide. The structures are expensive to construct but there is an opportunity to have significant financial profit. "
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Saperski, Marek. "Technology of Welding Large-sized Rings of Offshore Structures." Biuletyn Instytutu Spawalnictwa, no. 6 (2015): 46–51. http://dx.doi.org/10.17729/ebis.2015.6/6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Ntaskagianni, Vasiliki. "Aluminium in Modular Structures for Offshore Lifts." Key Engineering Materials 710 (September 2016): 402–5. http://dx.doi.org/10.4028/www.scientific.net/kem.710.402.

Texto completo
Resumen
Offshore lifts can be performed by platform cranes, crane vessels, helicopters or modular structures. The challenge of an offshore lift lies in performing it in inaccessible locations on the platform and minimizing the cost and the offshore time. Platform cranes often cannot reach the lifting object, and crane vessels and helicopters provide solutions which increase the operation costs. On the contrary, aluminium modular structures provide solutions which can make a challenging lift efficient and successful without incurring high costs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía