Siga este enlace para ver otros tipos de publicaciones sobre el tema: Offshore structures – Hydrodynamics.

Tesis sobre el tema "Offshore structures – Hydrodynamics"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 46 mejores tesis para su investigación sobre el tema "Offshore structures – Hydrodynamics".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Hodgkinson, Derek Anthony Martin. "Computer graphics applications in offshore hydrodynamics". Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26705.

Texto completo
Resumen
The results of hydrodynamic analyses of two problems involving offshore structures are displayed graphically. This form of presentation of the results and the liberal use of colour have been found to significantly help the ease in which the results are interpreted. For the transformation of waves around an artificial island, a time history of the evolution of the regular, unidirectional wave field around an artificial island is obtained. Through the use of colour, regions in which wave breaking occurs have been clearly defined. The numerical technique used is based on the finite element method using eight noded isoparametric elements. The determination of the transformed wave field takes wave breaking, wave refraction, diffraction, reflection and shoaling into account. The graphical display is achieved by using a plotting program developed for the output of finite element analyses. The motions of a semi-submersible rig are computed from the RAO curves of the rig, used to obtain its' small response in a random sea. The numerical technique used in the analysis assumes that the vertical members are slender and may be analysed using the Morison equation whereas the hulls are treated as large members which are discretised and analysed using diffraction theory. The discretisation of the cylinders and hulls together with the time history of the rig's motions are displayed graphically. Once again, the graphical display is plotted using a program developed for the output of finite element analyses for four noded elements. In this case, a finite element technique has not been employed but the results were ordered to act as though this is the case. The slender members (cylinders) and large members (hulls) are clearly distinguishable by using different colours. The elements used in the analysis are also clearly shown. The VAX 11/730 system was used to obtain the results shown. A video tape, using the results of a time stepping procedure, was made by successively recording the hardcopies produced by the VAX printer. The time stepping could also be seen, in real time, on the IRIS.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Schulz, Karl Wayne. "Numerical prediction of the hydrodynamic loads and motions of offshore structures /". Digital version accessible at:, 1999. http://wwwlib.umi.com/cr/utexas/main.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Walker, Daniel Anthony Guy. "Interaction of extreme ocean waves with offshore structures". Thesis, University of Oxford, 2006. http://ora.ox.ac.uk/objects/uuid:6858dc08-1bd4-4195-8893-1af98d5e68e3.

Texto completo
Resumen
With most of the world's untouched oil and gas resources offshore and the possibility that hurricanes are becoming more frequent and more intense, the risks associated with offshore oil and gas production are increasing. Therefore, there is an urgent need to improve current understanding of extreme ocean waves and their interaction with structures. This thesis is concerned with the modelling of extreme ocean waves and their diffraction by offshore structures, with the ultimate aim of proposing improved tools for guiding airgap design. The feasibility of using linear and second order diffraction solutions with a suitable incident wave field to predict extreme green water levels beneath multi-column structures is investigated. Such tools, when fully validated, could replace the need to carry out model tests during preliminary design. When contemplating airgap design it is crucially important that consideration is given to the largest waves in a sea state, the so-called freak or rogue waves. This thesis studies the nature of one specific freak wave for which field data is available, namely the Draupner New Year wave. Unique features of this wave are identified, distinguishing it from a typical large wave, and an estimate of the probability of occurrence of the wave is given. Furthermore, a design wave, called NewWave, is proposed as a good model for large ocean waves and is validated against field and experimental data. The diffraction of regular waves and NewWaves by a number of structural configurations is studied. In order to assess the validity of using diffraction solutions for the purposes of airgap design, comparisons are made with measured wave data from a programme of wave tank experiments. Wave data for a real platform configuration are examined to highlight the key issues complicating the validation of diffraction based design tools for real structures. The ability of diffraction theory to reproduce real wave measurements is discussed. The phenomenon of near-trapping is also investigated, allowing guidelines for airgap design to be established.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

周奮鵬 y Fun-pang Chau. "Numerical methods in wave loading of large offshore structures". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1985. http://hub.hku.hk/bib/B31206797.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Abdolmaleki, Kourosh. "Modelling of wave impact on offshore structures". University of Western Australia. School of Mechanical Engineering, 2007. http://theses.library.uwa.edu.au/adt-WU2008.0055.

Texto completo
Resumen
[Truncated abstract] The hydrodynamics of wave impact on offshore structures is not well understood. Wave impacts often involve large deformations of water free-surface. Therefore, a wave impact problem is usually combined with a free-surface problem. The complexity is expanded when the body exposed to a wave impact is allowed to move. The nonlinear interactions between a moving body and fluid is a complicated process that has been a dilemma in the engineering design of offshore and coastal structures for a long time. This thesis used experimental and numerical means to develop further understanding of the wave impact problems as well as to create a numerical tool suitable for simulation of such problems. The study included the consideration of moving boundaries in order to include the coupled interactions of the body and fluid. The thesis is organized into two experimental and numerical parts. There is a lack of benchmarking experimental data for studying fluid-structure interactions with moving boundaries. In the experimental part of this research, novel experiments were, therefore, designed and performed that were useful for validation of the numerical developments. By considering a dynamical system with only one degree of freedom, the complexity of the experiments performed was minimal. The setup included a plate that was attached to the bottom of a flume via a hinge and tethered by two springs from the top one at each side. The experiments modelled fluid-structure interactions in three subsets. The first subset studied a highly nonlinear decay test, which resembled a harsh wave impact (or slam) incident. The second subset included waves overtopping on the vertically restrained plate. In the third subset, the plate was free to oscillate and was excited by the same waves. The wave overtopping the plate resembled the physics of the green water on fixed and moving structures. An analytical solution based on linear potential theory was provided for comparison with experimental results. ... In simulation of the nonlinear decay test, the SPH results captured the frequency variation in plate oscillations, which indicated that the radiation forces (added mass and damping forces) were calculated satisfactorily. In simulation of the nonlinear waves, the waves progressed in the flume similar to the physical experiments and the total energy of the system was conserved with an error of 0.025% of the total initial energy. The wave-plate interactions were successfully modelled by SPH. The simulations included wave run-up and shipping of water for fixed and oscillating plate cases. The effects of the plate oscillations on the flow regime are also discussed in detail. The combination of experimental and numerical investigation provided further understanding of wave impact problems. The novel design of the experiments extended the study to moving boundaries in small scale. The use of SPH eliminated the difficulties of dealing with free-surface problems so that the focus of study could be placed on the impact forces on fixed and moving bodies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Cheung, Kwok Fai. "Hydrodynamic interactions between ice masses and large offshore structures". Thesis, University of British Columbia, 1987. http://hdl.handle.net/2429/26686.

Texto completo
Resumen
The objective of the work described in this thesis is to evaluate the significance of the ambient fluid on the motion of an ice mass in the vicinity of an offshore structure and during the subsequent impact mechanism. Models for iceberg drift are first reviewed. The changes in flow field around an ice mass drifting in a current near an offshore structure are investigated by potential flow theory. The proximity effects and current interactions are generalized by introducing the added mass and convective force coefficients for the ice mass. A two-dimensional numerical model based on the boundary element method is developed to calculate these coefficients over a range of separation distances up to the point of contact. A numerical model based on ice properties and geometry is developed to simulate the impact force acting on the structure. Both the 'contact-point' added masses estimated in this thesis and the traditionally assumed far-field added masses are used in the impact model separately. The results from the two cases are compared and the crucial roles played by the ambient fluid during impact are discussed. Finally, a number of related topics is proposed for further studies.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

McTaggart, Kevin Andrew. "Hydrodynamics and risk analysis of iceberg impacts with offshore structures". Thesis, University of British Columbia, 1989. http://hdl.handle.net/2429/30733.

Texto completo
Resumen
The evaluation of design iceberg impact loads for offshore structures and the influence of hydrodynamic effects on impact loads are examined. Important hydrodynamic effects include iceberg added mass, wave-induced oscillatory iceberg motions, and the influence of a large structure on the surrounding flow field and subsequent velocities of approaching icebergs. The significance of these phenomena has been investigated using a two-body numerical diffraction model and through a series of experiments modelling the drift of various sized icebergs driven by waves and currents approaching a large offshore structure. Relevant findings from the hydrodynamic studies have been incorporated into two probabilistic models which can be used to determine design iceberg collision events with a structure based on either iceberg kinetic energy upon impact or global sliding force acting on the structure. Load exceedence probabilities from the kinetic energy and sliding force models are evaluated using the second-order reliability method. Output from the probabilistic models can be used to determine design collision parameters and to assess whether more sophisticated modelling of various impact processes is required. The influence of the structure on velocities of approaching icebergs is shown to be significant when the structure horizontal dimension is greater than twice the iceberg dimension. As expected, wave-induced oscillatory motions dominate the collision velocity for smaller icebergs but have a negligible effect on velocity for larger icebergs.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Lipsett, Arthur William. "Nonlinear response of structures in regular and random waves". Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25826.

Texto completo
Resumen
The problem of the dynamics of a flexible offshore structure in either a regular or random sea is considered in this thesis. A simple single degree of freedom model of the structure is assumed and the relative velocity formulation of the Morison equation is used to describe the fluid force. The resulting equation of motion is a nonlinear ordinary differential equation with either harmonic or stochastic forcing depending on the wave description. Solutions are obtained for regular deterministic waves by numerical integration, various linearization methods and a new perturbation method developed in this thesis. The numerical solution is used to assess the accuracy of each of the approximate solution methods. Of these, the perturbation method is found to give the best approximation to the numerical solution over the complete frequency range of interest. For random seas the response spectrum and the mean square response are obtained by various linearization methods, the method of equivalent linearization, and by the new perturbation method. The perturbation method and the method of equivalent linearization are very similar in that they both yield the same values of effective damping. Comparison of the results obtained by a numerical simulation method with the results of the perturbation method and the widely used method of equivalent linearization shows that the perturbation method gives a better estimate of the response mean square value than does the method of equivalent linearization. For all of the approximate solution methods that are discussed it was found that the use of Hermite polynomials to represent the solution is very effective in obtaining various expected values required in the computational procedure. In addition to the average response statistics, such as the response mean square value, the probability density of the response is also considered. It is well known that the response of a linear system to Gaussian forcing is itself Gaussian. The wave force given by the Morison equation is non-Gaussian and therefore the response is also non-Gaussian but of unknown form. The hypothesis that for a linear equation, the probability density of the response is of the same form as the probability density of forcing, even for the case of non-Gaussian forcing, is investigated and verified using the results of numerical simulations. Design considerations of interest which follow from the response probability density are also discussed.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Richardson, Mark Damian. "Dynamically installed anchors for floating offshore structures". University of Western Australia. School of Civil and Resource Engineering, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0230.

Texto completo
Resumen
The gradual depletion of shallow water hydrocarbon deposits has forced the offshore oil and gas industry to develop reserves in deeper waters. Dynamically installed anchors have been proposed as a cost-effective anchoring solution for floating offshore structures in deep water environments. The rocket or torpedo shaped anchor is released from a designated drop height above the seafloor and allowed to penetrate the seabed via the kinetic energy gained during free-fall and the anchor’s self weight. Dynamic anchors can be deployed in any water depth and the relatively simple fabrication and installation procedures provide a significant cost saving over conventional deepwater anchoring systems. Despite use in a number of offshore applications, information regarding the geotechnical performance of dynamically installed anchors is scarce. Consequently, this research has focused on establishing an extensive test database through the modelling of the dynamic anchor installation process in the geotechnical centrifuge. The tests were aimed at assessing the embedment depth and subsequent dynamic anchor holding capacity under various loading conditions. Analytical design tools, verified against the experimental database, were developed for the prediction of the embedment depth and holding capacity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Hildebrandt, Arndt [Verfasser]. "Hydrodynamics of breaking waves on offshore wind turbine structures / Arndt Hildebrandt". Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2014. http://d-nb.info/1053540329/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Nwogu, Okey U. "Wave loads and motions of long structures in directional seas". Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/25129.

Texto completo
Resumen
The effects of wave directionality on the loads and motions of long structures is investigated in this thesis. A numerical method based on Green's theorem is developed to compute the exciting forces and hydrodynamic coefficients due to the interaction of a regular oblique wave train with an infinitely long, semi-immersed floating cylinder of arbitrary shape. Comparisons are made with previous results obtained using other solution techniques. The results obtained from the solution of the oblique wave diffraction problem are used to determine the transfer functions and response amplitude operators for a structure of finite length and hence the loads and amplitudes of motion of the structure in short-crested seas. The wave loads and body motions in short-crested seas are compared to corresponding results for long-crested seas. This is expressed as a directionally averaged, frequency dependent reduction factor for the wave loads and a response ratio for the body motions. Numerical results are presented for the force reduction factor and response ratio of a long floating box subject to a directional wave spectrum with a cosine power type energy spreading function. Applications of the results of the present procedure include such long structures as floating bridges and breakwaters.
Applied Science, Faculty of
Civil Engineering, Department of
Graduate
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Chau, Fun Pang. "The second order velocity potential for diffraction of waves by fixed offshore structures". Thesis, University College London (University of London), 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296841.

Texto completo
Resumen
It is well known that second order effects may in many cases be important for the nonlinear hydrodynamic problems arising in ocean engineering. Despite considerable efforts having been made in the past in calculating second order unsteady forces, similar studies are rare for the actual second order velocity potential itself, which is important for the understanding of wave kinematics. A mathematical model has been developed for the calculation of the second order sum frequency diffraction potential for fixed bodies in waves. It is believed that a first step towards the solution of the second order problem is the accurate evaluation of the first order quantities. By the use of Green's second identity, the first order problem can be cast into the form of a Fredholm integral equation and then solved by the Boundary Element Method. Some new developments based on this technique have been undertaken in this work, and as a result, there is a major improvement in the accuracy of the first order analysis. For the second order problem, the solution procedures are similar to those used for the first order problem except that special techniques have been developed to calculate efficiently the additional free surface integral which decays slowly to infinity in a highly oscillatory manner. In addition, an effective method has also been implemented to calculate the second derivative term in the free surface integral. From the numerical results presented, a number of interesting findings are illustrated. A closed form expression for a vertical circular cylinder has also been developed which not only furnishes a valuable check on the general numerical model but also provides some physical explanation for the second order phenomena. Moreover, it has been used to investigate some theoretical problems which (in the past) have caused confusion and error in the second order analysis. They are mainly associated with the troublesome nonhomogeneity presented in the free surface boundary condition.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Muthedath, Premkumar. "Numerical study of nonlinear free-surface flows". Thesis, This resource online, 1992. http://scholar.lib.vt.edu/theses/available/etd-07212009-040300/.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Duong, Chay N. "A study of new-wave theory and an implementation of the new wave theory into GTSELOS computer program". Thesis, Georgia Institute of Technology, 1997. http://hdl.handle.net/1853/21492.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Tochetto, Luan Grégori 1989. "Estudo experimental de um supressor de vibração PTMD em um modelo reduzido de jumper submerso". [s.n.], 2013. http://repositorio.unicamp.br/jspui/handle/REPOSIP/264456.

Texto completo
Resumen
Orientador: Sérgio Nascimento Bordalo
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências
Made available in DSpace on 2018-08-23T18:52:37Z (GMT). No. of bitstreams: 1 Tochetto_LuanGregori_M.pdf: 7430018 bytes, checksum: 8523efb2c0601ab21d1e2057f0d7c2af (MD5) Previous issue date: 2013
Resumo: Tubulações submarinas, tais como risers e jumpers, sofrem carregamentos estáticos e dinâmicos devido a forças ambientais, correntes marítimas e ondas, carregamentos devido aos deslocamentos da unidade flutuante de produção (plataformas ou navios), escoamento interno, além de outras causas. O controle dos deslocamentos oscilatórios dessas tubulações é fundamental para a confiabilidade e vida em fadiga desses sistemas, motivando projetos de pesquisa com tal propósito nos últimos anos. Uma tecnologia em consideração é o Pounding Tuned Mass Damper (PTMD), o qual é o assunto do presente trabalho. Este trabalho apresenta um estudo experimental de um absorvedor de vibrações - o PTMD - acoplado a um modelo de jumper submarino em escala reduzida. O aparato é composto de uma seção de tubo montada em um sistema de suspensão elástica para movimento em duas direções, propiciando similaridade dinâmica parcial entre o protótipo e o modelo. O modelo de PTMD é um sistema massa - mola anexado, similar a um supressor tuned mass damper (TMD), a não ser a adição de um envoltório de batimento, o qual limita o deslocamento da massa do PTMD, dissipando energia do tubo oscilante através do impacto da massa do PTMD contra esse envoltório. Experimentos de oscilação livre e forçada foram realizados na direção vertical, no seco e na água. Os resultados obtidos de amplitude versus frequência foram utilização para determinar a eficácia do absorvedor quando comparado com sua operação a seco. Os resultados deste trabalho são os primeiros passos no desenvolvimento de um dispositivo aplicável a uma real tubulação submarina de petróleo. Os dados adquiridos neste trabalho foram empregados na melhoria e desenvolvimento de um modelo numérico do sistema tubo - PTMD para um simulador computacional
Abstract: Submarine pipelines, such as jumpers and risers, suffer static and dynamic loads due to environmental forces - currents and waves, to the displacements of floating production units (platforms or ships) and to the internal flow, among other causes. Controlling the oscillatory displacements of the pipelines is critical to the reliability and fatigue of these systems, motivating research projects to deal with such issues in the past few years. One technology under consideration is the Pounding Tuned Mass Damper (PTMD), which is the subject of the present work. The current work presents an experimental study of a vibration suppressor - the PTMD - attached to a scaled down submarine jumper model. The apparatus is composed of a test pipe section mounted on an elastic suspension harness for two directions of motion, providing partial dynamic similarity between the prototype and the model. The PTMD model is a lumped mass-spring attachment similar to a tuned mass dumper (TMD) suppressor, but with the addition of a pounding layer, which limits the motion of the PTMD mass, dissipating the energy of the oscillating pipe through the impact of the PTMD mass against that layer. So far, free and forced oscillation experiments were executed, in the vertical direction. The tests were conducted in a water tank, where comparisons of amplitude versus frequency were made to determine the suppressor effectiveness, on air and underwater. The results of this work are the preliminary step on the development of a device applicable to an actual petroleum submarine pipeline. The data gathered from this work was employed in the improvement of a numerical model of the pipe-PTMD system for a computer simulator
Mestrado
Explotação
Mestre em Ciências e Engenharia de Petróleo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Winsor, Fraser N. "Methods for removing inertial force from measured wave impact force signals". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape4/PQDD_0021/MQ55546.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Zhou, Hongjie. "Numerical study of geotechnical penetration problems for offshore applications". University of Western Australia. Centre for Offshore Foundation Systems, 2008. http://theses.library.uwa.edu.au/adt-WU2008.0239.

Texto completo
Resumen
The research carried out in this thesis has concentrated on the application of numerical solutions to geotechnical penetration problems in offshore engineering. Several important issues closely relevant to deep-water oil and gas developments were investigated, covering installation of suction caisson foundations, interpretation of fullflow penetrometers and shallow penetration of a cylindrical object (submarine pipeline or T-bar), all in clayey sediments such as are often encountered in deep-water sites. These problems are commonly characterised by large vertical movements of structural elements relative to the seabed. A large deformation finite element method was adopted and further developed to simulate these challenging problems, referred to as Remeshing and Interpolation Technique with Small Strain. In this approach, a sequence of small strain Lagrangian increments, remeshing and interpolation of stresses and material properties are repeated until the required displacement has been reached. This technique is able to model relative motion between the penetrating objects and the soil, which is critical for evaluating soil heave inside the caissons, the effect of penetration-induced remoulding on the resistance of full-flow penetrometers, and influence of soil surface heave on the embedment of pipelines. '...' Simple expressions were presented allowing the resistance factors for the T-bar and ball penetrometers to be expressed as a function of the rate and strain-softening parameters. By considering average strength conditions during penetration and extraction of these full-flow penetrometers, an approximate expression was derived that allowed estimation of the hypothetical resistance factor with no strain-softening, and hence an initial estimate of the stain-rate dependency of the soil. Further simulations of cyclic penetration tests showed that a cyclic range of three diameters of the penetrometers was sufficient to avoid overlap of the failure mechanism at the extremes and mid-point of the cyclic range. The ball had higher resistance factors compared with the T-bar, but with similar cyclic resistance degradation curves, which could be fitted accurately by simple expressions consistent with the strain-softening soil model adopted. Based on the curve fitting, more accurate equations were proposed to deduce the resistance factor with no strain-softening, compared with that suggested previously based on the resistances measured in the first cycle of penetration and extraction. The strain-rate dependency was similar in intact or post-cyclic soil for a given rate parameter. The resistance factor for the post-cyclic condition was higher than that for the initial conditions, to some degree depending upon soil sensitivity and brittleness parameter. For the shallow penetration of a cylindrical object, the penetration resistance profile observed from centrifuge model tests was very well captured by the numerical simulation. The mechanism of shear band shedding was reproduced by the numerical technique, although the frequency of the shear band generation and the exact shape of the heave profile were not correctly captured, which were limited by the simple strainsoftening soil model adopted.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Bellezi, Cezar Augusto. "Análise numérica de fenômenos de impacto hidrodinâmico em plataformas offshore". Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/3/3135/tde-23102015-153652/.

Texto completo
Resumen
O presente trabalho é focado no estudo dos violentos fenômenos de impacto hidrodinâmico que podem prejudicar a operação de plataformas offshore. São três os fenômenos abordados neste trabalho: o green water, o wave runup e o sloshing. O fenômeno de wave runup consiste na projeção vertical de uma coluna de água devido ao impacto de ondas em estruturas transversais. O fenômeno de green water consiste no embarque de água no convés, podendo danificar os equipamentos da planta de produção. Por fim, o sloshing consiste no movimento violento de fluído em tanques parcialmente preenchidos, resultando em perigosos carregamentos em suas paredes. Tais fenômenos possuem natureza altamente não linear e sua análise, considerando-se toda a sua complexidade, ainda constitui um desafio para a engenharia naval e oceânica. Os métodos de partículas têm se destacado no tratamento de tais fenômenos envolvendo interação fluído-estruturas, grandes deformações e fragmentação de superfície livre. Desta maneira, optou-se pelo emprego do método de partículas Moving Particles Semi-Implicit (MPS) neste trabalho para o estudo dos fenômenos de impacto hidrodinâmico. O MPS é um método totalmente lagrangeano para escoamentos incompressíveis. Para os três fenômenos abordados neste trabalho há uma primeira etapa de validação, na qual os resultados numéricos são comparados a resultados experimentais da literatura. Uma segunda etapa é baseada na aplicação do método numérico na análise de ferramentas para a mitigação dos esforços resultantes do impacto hidrodinâmico. Nesta etapa é investigada a influência do formato da proa no fenômeno de green water e a utilização de anteparas fixas e flutuantes para a mitigação de sloshing em tanques.
The present work is focused in the study of the violent hydrodynamic impact phenomenon which could jeopardize the offshore platforms operation. In this work three different phenomena involving hydrodynamic impact are studied: green water, wave runup and sloshing. The wave runup consists in the vertical projection of a water column due to wave impact on a transversal structure, such as submersible columns. The green water consists in the water boarding on the deck which could damage the equipment over the oil platform deck. Finally, the sloshing phenomenon is the violent movement of fluid in partially filled tanks, resulting in dangerous impact loads at its walls. The hydrodynamic impact phenomenon has strongly non linear nature and is still a challenge for the naval and offshore engineering its analysis considering all its complexity. The particle methods present advantages in the analysis of phenomena involving fluid structure interaction, large free surface deformation, fragmentation and merging. Therefore, in the present study the Moving Particles Semi-Implicit (MPS) method is used. The MPS is a fully lagrangian method for the simulation of incompressible flows. For the three phenomena studied in the present work a first step of validation is performed. In the validation step the numerical results obtained by the particle method are compared to experimental data presented in the literature. The second step consists in the application of the numerical method to investigate simple mechanisms to mitigate the hydrodynamic impact loads. For example, the effect of the bow shape in the green water phenomenon is studied. Also in this step the use of fixed and floating baffles in order to suppress the sloshing phenomenon are investigated.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Motamed, Dashliborun Amir. "Performance of multiphase packed-bed reactors and scrubbers on offshore floating platforms: hydrodynamics, chemical reaction, CFD modeling and simulation". Doctoral thesis, Université Laval, 2018. http://hdl.handle.net/20.500.11794/30439.

Texto completo
Resumen
Les systèmes flottants de production, stockage et de déchargement (FPSO) ont été introduits dans les secteurs d'exploitation des hydrocarbures offshore en tant qu'outils facilement déplaçables pour l’exploitation de champs de pétrole et de gaz de petites ‘a moyenne tailles ou lorsque ceux-ci sont éloignés des côtes ou en eaux profondes. Ces systèmes sont de plus en plus envisagés pour les opérations de traitement et de raffinage des hydrocarbures à proximité des sites d'extraction des réservoirs sous-marins en utilisant des laveurs et des réacteurs à lit fixe embarqués. De nombreuses études dans la littérature pour découvrir l'hydrodynamique de l'écoulement polyphasiques dans des lits garnis ont révélé que la maîtrise de tels réacteurs continue d’être un défi quant à leur conception /mise à l'échelle ou à leur fonctionnement. De plus, lorsque de tels réacteurs sont soumis à des conditions fluctuantes propres au contexte marin, l'interaction des phases devient encore plus complexe, ce qui entraîne encore plus de défis dans leur conception. Les travaux de recherche proposés visent à fournir des informations cruciales sur les performances des réacteurs à lit fixes à deux phases dans le cadre d'applications industrielles flottantes. Pour atteindre cet objectif, un simulateur de mouvement de navire de type hexapode avec des mouvements à six degrés de liberté a été utilisé pour simuler les mouvements des FPSO tandis que des capteurs à maillage capacitif (WMS) et un tomographe à capacitance électrique (ECT) couplés avec le lit garni ont permis de suivre en ligne les caractéristiques dynamiques locales des écoulements diphasiques. L'effet des inclinaisons et des oscillations de la colonne sur le comportement hydrodynamique des lits garnis biphasiques a été étudié, puis les résultats ont été comparés à leurs analogues terrestres correspondants (colonne verticale immobile). De plus, des stratégies opérationnelles potentielles ont été proposées pour atténuer la maldistribution des fluides résultant des oscillations du lit ainsi que pour intensifier le processus de réactions dans les réacteurs à lit fixe. Parallèlement aux études expérimentales, un modèle Eulérien CFD transitoire 3D a été développé pour simuler le comportement hydrodynamique de lits garnis polyphasiques sous des inclinaisons et des oscillations de colonnes. Enfin, pour compléter le travail expérimental, une étude systématique a été réalisée pour étudier les performances de capture de CO2 à base d'amines d’un laveur à garnissage (en vrac et structuré) émulant une colonne à bord des ...
Floating production storage and offloading (FPSO) systems have been introduced to offshore hydrocarbon exploitation sectors as readily movable tools for development of small or remote oil and gas fields in deeper water. These systems are increasingly contemplated for onboard treatment and refining operations of hydrocarbons extracted from undersea reservoirs near extraction sites using embarked packed-bed scrubbers and reactors. Numerous efforts in the literature to uncover the hydrodynamics of multiphase flow in packed beds have disclosed that such reactors continue to challenge us either in their design/scale-up or their operation. Furthermore, when such reactors are subjected to marine conditions, the interaction of phases becomes even more complex, resulting in further challenges for design and scale-up. The proposed research aims at providing important insights into the performance of two-phase flow packed-bed reactors in the context of floating industrial applications. To achieve this aim, a hexapod ship motion simulator with six-degree-of-freedom motions was employed to emulate FPSO movements while capacitance wire mesh sensors (WMS) and electrical capacitance tomography (ECT) coupled with the packed bed scrutinized on-line and locally the two-phase flow dynamic features. The effect of column tilts and oscillations on the hydrodynamic behavior of multiphase packed beds was investigated and then the results were compared with their corresponding onshore analogs. Moreover, potential operational strategies were proposed to diminish fluid maldistribution resulting from bed oscillations as well as for process intensification of heterogeneous catalytic reactions in packed-bed reactors. In parallel with the experiment studies, a 3D transient Eulerian CFD model was developed to simulate the hydrodynamic behavior of multiphase packed beds under column tilts and oscillations. Ultimately, a systematic experimental study was performed to address the amine-based CO2 capture performance of packed-bed scrubbers on board offshore floating vessels/platforms. Apart from gaining a comprehensive knowledge on the influence of translational and rotational movements on multiphase flows in porous media, oil and gas sectors and ship industry would benefit from the results of this work for design and scale-up of industrial reactors and scrubbers.
Unité flottante de production, de stockage et de déchargement
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Santos, Marcus Vinicius Franchi dos 1983. "Um estudo comparativo de dutos em vãos livres através de simulações numéricas". [s.n.], 2015. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265806.

Texto completo
Resumen
Orientador: Celso Kazuyuki Morooka
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica e Instituto de Geociências
Made available in DSpace on 2018-08-27T09:36:46Z (GMT). No. of bitstreams: 1 Santos_MarcusViniciusFranchidos_M.pdf: 2250280 bytes, checksum: 714679541259e76068e17573b7fb74b1 (MD5) Previous issue date: 2015
Resumo: Vibrações Induzidas por Vórtices em dutos com vãos livres sujeitos a corrente marítima é um problema presente na indústria offshore. Embora significativos esforços tenham sido feitos para entender este complicado problema de interação fluido estrutura, a modelagem numérica para cálculo é ainda um grande desafio. O presente trabalho tem como objetivo principal caracterizar o comportamento dinâmico dos dutos em vãos livres sob os efeitos do fenômeno da vibração induzida por vórtices (VIV). A disponibilidade de diversos programas de cálculo de VIV para estruturas offshore esbeltas facilita a avaliação da vida útil dessas estruturas e reduz o custo de projetos. No entanto, um bom domínio das metodologias adotadas por programas utilizados na indústria e a consciência das limitações correspondentes a diferentes técnicas são fundamentais para que o analista faça uso adequado dessas ferramentas computacionais. Neste sentido, este trabalho faz uma revisão dos diferentes modelos para estimar as forças de VIV devidas à corrente marinha. Para isto, diferentes programas de computador foram utilizados para calcular as vibrações na direção transversal de incidência de corrente, provocadas pelo desprendimento de vórtices em um duto com vão livre. As simulações do comportamento dinâmico da parcela em vão livre do duto foram realizadas utilizando três abordagens, respectivamente: modelos hidrodinâmicos de força de VIV semi-empíricos, no domínio da frequência; modelos hidrodinâmicos de força de VIV semi-empíricos, baseados nos coeficientes de sustentação e número de Strouhal, no domínio do tempo e um modelo hidrodinâmico de wakeoscillator, no domínio do tempo. Os resultados das simulações são analisados através de comparações com dados experimentais. Além disso, as limitações da cada modelo são discutidas
Abstract: Vortex induced vibration (VIV) of free span pipeline subjecting to ocean current is a present problem in the offshore industry. Although significant efforts have done to understand this complicated fluid structure interaction problem, the numerical modeling and predicting is still a big challenge. The primary objective of this work is to characterize the dynamic behavior of pipelines with free span under the effects of the Vortex-Induced Vibration (VIV) phenomenon. Different models to estimate VIV forces due to sea current are discussed. For this purpose, different computer programs were used to predict vibrations in the transverse direction of the current incidence direction, caused by the vortex shedding in a free span of the pipeline. Simulations of the dynamic behavior of a free span portion of the pipeline were carried out by two approaches, respectively: semi-empirical hydrodynamic VIV force model, in frequency domain and, semi-empirical VIV force model based on the lift coefficient and Strouhal number, in time domain and a wake oscillator in time domain. Simulations results are analyzed through comparisons with experimental data and also limitations of the each model are discussed
Mestrado
Explotação
Mestre em Ciências e Engenharia de Petróleo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Morris-Thomas, Michael. "An investigation into wave run-up on vertical surface piercing cylinders in monochromatic waves". University of Western Australia. School of Oil and Gas Engineering, 2003. http://theses.library.uwa.edu.au/adt-WU2004.0010.

Texto completo
Resumen
[Formulae and special characters can only be approximated here. Please see the pdf version of the abstract for an accurate reproduction.] Wave run-up is the vertical uprush of water when an incident wave impinges on a free- surface penetrating body. For large volume offshore structures the wave run-up on the weather side of the supporting columns is particularly important for air-gap design and ultimately the avoidance of pressure impulse loads on the underside of the deck structure. This investigation focuses on the limitations of conventional wave diffraction theory, where the free-surface boundary condition is treated by a Stokes expansion, in predicting the harmonic components of the wave run-up, and the presentation of a simplified procedure for the prediction of wave run-up. The wave run-up is studied on fixed vertical cylinders in plane progressive waves. These progressive waves are of a form suitable for description by Stokes' wave theory whereby the typical energy content of a wave train consists of one fundamental harmonic and corresponding phase locked Fourier components. The choice of monochromatic waves is indicative of ocean environments for large volume structures in the diffraction regime where the assumption of potential flow theory is applicable, or more formally A/a < Ο(1) (A and a being the wave amplitude and cylinder radius respectively). One of the unique aspects of this work is the investigation of column geometry effects - in terms of square cylinders with rounded edges - on the wave run-up. The rounded edges of each cylinder are described by the dimensionless parameter rc/a which denotes the ratio of edge corner radius to half-width of a typical column with longitudinal axis perpendicular to the quiescent free-surface. An experimental campaign was undertaken where the wave run-up on a fixed column in plane progressive waves was measured with wire probes located close to the cylinder. Based on an appropriate dimensional analysis, the wave environment was represented by a parametric variation of the scattering parameter ka and wave steepness kA (where k denotes the wave number). The effect of column geometry was investigated by varying the edge corner radius ratio within the domain 0 <=rc/a <= 1, where the upper and lower bounds correspond to a circular and square shaped cylinder respectively. The water depth is assumed infinite so that the wave run-up caused purely by wave-structure interaction is examined without the additional influence of a non-decaying horizontal fluid velocity and finite depth effects on wave dispersion. The zero-, first-, second- and third-harmonics of the wave run-up are examined to determine the importance of each with regard to local wave diffraction and incident wave non-linearities. The modulus and phase of these harmonics are compared to corresponding theoretical predictions from conventional diffraction theory to second-order in wave steepness. As a result, a basis is formed for the applicability of a Stokes expansion to the free-surface boundary condition of the diffraction problem, and its limitations in terms of local wave scattering and incident wave non-linearities. An analytical approach is pursued and solved in the long wavelength regime for the interaction of a plane progressive wave with a circular cylinder in an ideal fluid. The classical Stokesian assumption of infinitesimal wave amplitude is invoked to treat the free-surface boundary condition along with an unconventional requirement that the cylinder width is assumed much smaller than the incident wavelength. This additional assumption is justified because critical wavelengths for wave run-up on a fixed cylinder are typically much larger in magnitude than the cylinder's width. In the solution, two coupled perturbation schemes, incorporating a classical Stokes expansion and cylinder slenderness expansion, are invoked and the boundary value problem solved to third-order. The formulation of the diffraction problem in this manner allows for third-harmonic diffraction effects and higher-order effects operating at the first-harmonic to be found. In general, the complete wave run-up is not well accounted for by a second-order Stokes expansion of the free-surface boundary condition and wave elevation. This is however, dependent upon the coupling of ka and kA. In particular, whilst the modulus and phase of the second-harmonic are moderately predicted, the mean set-up is not well predicted by a second-order Stokes expansion scheme. This is thought to be caused by higher than second-order non-linear effects since experimental evidence has revealed higher-order diffraction effects operating at the first-harmonic in waves of moderate to large steepness when k < < 1. These higher-order effects, operating at the first-harmonic, can be partially accounted for by the proposed long wavelength formulation. For small ka and large kA, subsequent comparisons with measured results do indeed provide a better agreement than the classical linear diffraction solution of Havelock (1940). To account for the complete wave run-up, a unique approach has been adopted where a correction is applied to a first-harmonic analytical solution. The remaining non-linear portion is accounted for by two methods. The first method is based on regression analysis in terms of ka and kA and provides an additive correction to the first-harmonic solution. The second method involves an amplification correction of the first-harmonic. This utilises Bernoulli's equation applied at the mean free-surface position where the constant of proportionality is empirically determined and is inversely proportional to ka. The experimental and numerical results suggest that the wave run-up increases as rc/a--› 0, however this is most significant for short waves and long waves of large steepness. Of the harmonic components, experimental evidence suggests that the effect of a variation in rc/a on the wave run-up is particularly significant for the first-harmonic only. Furthermore, the corner radius effect on the first-harmonic wave run-up is well predicted by numerical calculations using the boundary element method. Given this, the proposed simplified wave run-up model includes an additional geometry correction which accounts for rc/a to first-order in local wave diffraction. From a practical view point, it is the simplified model that is most useful for platform designers to predict the wave run-up on a surface piercing column. It is computationally inexpensive and the comparison of this model with measured results has proved more promising than previously proposed schemes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Tsukada, Raphael Issamu 1983. "Comportamento dinamico de riser rigido em catenaria devido a vibração induzida por vortices em aguas profundas". [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265457.

Texto completo
Resumen
Orientador: Celso Kazuyuki Morooka
Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica e Instituto de Geociencias
Made available in DSpace on 2018-08-13T09:48:02Z (GMT). No. of bitstreams: 1 Tsukada_RaphaelIssamu_M.pdf: 4706299 bytes, checksum: b217ddb6687b4f89959018a445ff1dee (MD5) Previous issue date: 2009
Resumo: O presente trabalho tem como objetivo principal caracterizar o comportamento dinâmico de risers em configuração catenária (SCR) sob os efeitos do fenômeno da vibração induzida por vórtices (VIV). Estes estudos foram realizados através de experimentos e simulações numéricas. O experimento foi realizado com modelo de SCR em escala reduzida em um tanque de provas sob várias condições simuladas do ambiente, variando a velocidade do carro dinamométrico, a amplitude dos movimentos impostos no topo do modelo, amplitudes e períodos de ondas. As simulações numéricas foram realizadas usando um modelo de VIV criado para a avaliação de risers rígidos verticais. Modificações para o modelo foram implementadas de forma a considerar a inclinação do riser em relação ao escoamento e os movimentos apresentados pela SCR. Os resultados experimentais e numéricos apresentaram algumas características de comportamento semelhantes aos dos risers utilizados para grandes lâminas da água, verificados por outros pesquisadores, tais como: os altos harmônicos da freqüência de desprendimento de vórtices e o comportamento misto de standing e travelling waves. Uma boa concordância foi observada comparação entre os resultados experimentais e numéricos.
Abstract: The primary objective of this work is to characterize the dynamic behavior of steel catenary risers (SCR) under the effects of the Vortex-Induced Vibration (VIV) phenomenon. This study was conducted applying both experimental and numerical approaches. A SCR model test was performed in a towing tank under several simulated environment condition combinations such as; varying the towing speed, riser top forced oscillation amplitudes and surface wave characteristics. Numerical simulations were computed using an empirical VIV model created for the evaluation of top tensioned vertical rigid risers. Modifications to the model were implemented to allow consideration for the inclination of the riser relative to the fluid flow and the movement of the SCR. The experimental e numerical results present some dynamic behavior characteristics similar to that of deep sea risers found by others researcher mainly high harmonics of the vortex shedding frequency and a mix of standing and traveling wave behavior. Results from the comparison of experimental and numerical results have shown a good agreement.
Mestrado
Explotação
Mestre em Ciências e Engenharia de Petróleo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Kitney, Neil. "Hydrodynamic loading of catenary mooring lines". Thesis, University College London (University of London), 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342219.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Murray, Brian A. "Hydrodynamic loading due to appurtenances on jacket structures". Thesis, University of Newcastle Upon Tyne, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.239242.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Theophanatos, Andreas. "Marine growth and the hydrodynamic loading of offshore structures". Thesis, University of Strathclyde, 1988. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=26411.

Texto completo
Resumen
This thesis presents the results of a study on the effects of marine growth on the hydrodynamic loading of offshore structures and proposes an approach that can be adopted by designers and operators to quantify these effects. The approach is based upon the realistic characterisation of marine growth and its temporal variations during the life span of template structures. Past research work and current design, inspection and maintenance practices are critically reviewed and their limitations with respect to marine growth are highlighted. The ecology of marine growth for a sample of North Sea platforms was examined to establish the variety and physical attributes of the fouling colonies. The traditional single-parameter characterisation of marine roughness was found to be inadequate. Appropriate parameters, verified by fluid loading experiments, are established. Details of the laboratory experiments undertaken with both real marine growth and artificial macro-roughness on circular cylinders are given. These tests were carried out at large scale (cylinders up to 521mm diameter) in a novel "buoyant cylinder" test rig (steady flow) and in a large wave flume (regular waves). A wide range of parametric variations were undertaken for the various types of marine growth in an attempt to establish a comprehensive database from which the loading effect of any likely, practically occuring, marine growth pattern can be estimated. The extent to which this is achieved and the requirements for further research are discussed in detail. It is concluded that the effects of marine growth are both substantial and diverse. Drag forces vary with type of fouling, overall thickness, surface cover, and distribution. Finally, detailed procedures are recommended for the design of new structures and the improved loading assessment of existing ones.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Sarkar, Abhijit. "Dynamics of moored offshore structures in random seas". Thesis, University of Oxford, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284464.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Carstens, Baerbel. "Hydrodynamic forces on cylinders subjected to single and multiple frequency excitation". Thesis, University of Strathclyde, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366670.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Indiyono, Paulus. "Hydrodynamic loading due to appurtenances on offshore structural members". Thesis, University of Newcastle Upon Tyne, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.307828.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Zhou, Chao Ying. "Effects of combination motions on cylinders in waves and currents". Thesis, Imperial College London, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.339445.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Naghipour, Morteza. "The accuracy of hydrodynamic force prediction for offshore structures and Morison's equation". Thesis, Heriot-Watt University, 1996. http://hdl.handle.net/10399/738.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Caputo, Piermodesto. "Hydrodynamic loading and structural dynamic assessment of offshore concrete lighthouse". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Buscar texto completo
Resumen
Historic rock-mounted lighthouses play a vital role in the safe navigation around perilous reefs. Their longevity is threatened by the battering of waves which may be set to increase with climate change. The protection of this historic heritage needs the identification of both structural dynamic parameters (natural frequencies and shape modes), and of the worst-cases wave load combination, able to affect that natural frequencies. This dissertation was developed during a period of five months at University of Plymouth, along with the researching team of the project STORMLAMP. The project is divided in three parts; the first involving a meteocean analysis, developed by means of peak over threshold technique, aimed to address realistically a test campaign held afterwards. The second, focused on the dynamic analysis of the Dubh Artach lighthouse and was developed by means of a Matlab toolbox provided to the group by Prof. Brownjohn from Exeter University, partner of the project as well. It is aimed on one hand to detect the dynamic properties of the structure and, on the other hand, to recognize eventual directionality in the structural response. The third phase was held at Plymouth University laboratory “COAST”. During this phase, a laboratory campaign, involving more than 100 tests, allowed to perform a parametric analysis aimed to identify the parameters, of an extreme wave, that influence more the impact force and that the wave exerts on the structure. To extract impact time history, force signals were decomposed by means of Empirical mode decomposition and Duhamel integral algorithms. Image analysis, moreover, allowed to locate run-up caused by those waves upon a steel cylinder and to integrate a study of the run-up as well. The analysis led to several considerations useful on one hand for the prediction of the worst-case loading of the Dubh Artach lighthouse and, on the other hand, for the introduction of the NewWave theory for the design of coastal structures.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Leroy, Vincent. "Aérodynamique instationnaire pour l'analyse de la tenue à la mer des éoliennes flottantes". Thesis, Ecole centrale de Nantes, 2018. http://www.theses.fr/2018ECDN0050/document.

Texto completo
Resumen
La simulation numérique des éoliennes flottantes est essentielle pour le développement des Energies Marines Renouvelables. Les outils de simulation classiquement utilisés supposent un écoulement stationnaire sur les rotors. Ces théories sont généralement assez précises pour calculer les forces aérodynamiques et dimensionner les éoliennes fixes (à terre ou en mer) mais les mouvements de la plateforme d’une éolienne flottante peuvent induire des effets instationnaires conséquents. Ceux-ci peuvent par exemple impacter la force de poussée sur le rotor. Cette thèse de doctorat cherche à comprendre et à quantifier les effets de l’aérodynamique instationnaire sur la tenue à la mer des éoliennes flottantes, dans différentes conditions de fonctionnement. L’étude montre que les forces aérodynamiques instationnaires impactent les mouvements de la plateforme lorsque le rotor est fortement chargé. Les modèles quasi-stationnaires arrivent néanmoins à capturer la dynamique des éoliennes flottantes avec une précision suffisante pour des phases de design amont. Les éoliennes flottantes à axe vertical sont elles aussi étudiées pour des projets offshore puisqu’elles pourraient nécessiter des coûts d’infrastructure réduits. Après avoir étudié l’influence de l’aérodynamique instationnaire sur la tenue à la mer de ces éoliennes, une comparaison est menée entre éoliennes flottantes à axe horizontal et à axe vertical. Cette dernière subit une importante poussée aérodynamique par vents forts, induisant de très grands déplacements et chargements
Accurate numerical simulation of thesea keeping of Floating Wind turbines (FWTs) is essential for the development of Marine Renewable Energy. State-of-the-art simulation tools assume a steady flow on the rotor. The accuracy of such models has been proven for bottom-fixed turbines, but has not been demonstrated yet for FWTs with substantial platform motions. This PhD thesis focuses on the impact of unsteady aerodynamics on the seakeeping of FWTs. This study is done by comparing quasi-steady to fully unsteady models with a coupled hydro-aerodynamic simulation tool. It shows that unsteady load shave a substantial effect on the platform motion when the rotor is highly loaded. The choice of a numerical model for example induces differences in tower base bending moments. The study also shows that state of the art quasi-steady aerodynamic models can show rather good accuracy when studying the global motion of the FWTs. Vertical Axis Wind Turbines (VAWTs) could lower infrastructure costs and are hence studied today for offshore wind projects. Unsteady aerodynamics for floating VAWT sand its effects on the sea keeping modelling have been studied during the PhD thesis,leading to similar conclusions than for traditional floating Horizontal Axis Wind Turbines (HAWTs). Those turbines have been compared to HAWTs. The study concludes that, without blade pitch control strategy, VAWTs suffer from very high wind thrust at over-rated wind speeds, leading to excessive displacements and loads. More developments are hence needed to improve the performance of such floating systems
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Kernot, Matthew Peter. "The second-order forcing and response of offshore structures in irregular seas". Thesis, University of Oxford, 1995. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306887.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Kim, Yonghwan 1964. "Computation of higher-order hydrodynamic forces on ships and offshore structures in waves". Thesis, Massachusetts Institute of Technology, 1999. http://hdl.handle.net/1721.1/79979.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Ercolanelli, Julien. "Étude numérique et expérimentale d'un système couplé stabilisateur et récupérateur d'énergie des vagues Experimental and numerical investigation of sloshing in anti-roll tank using effective gravity angle Experimental and numerical assessment of the performance of a new type passive anti-roll stabilisation system". Thesis, Brest, École nationale supérieure de techniques avancées Bretagne, 2019. http://www.theses.fr/2019ENTA0008.

Texto completo
Resumen
Le développement de Geps Techno est basé sur un concept innovant de structure flottante destinée à produire de l'énergie électrique à partir de plusieurs sources d'énergies marines renouvelables dont la source houlomotrice. Le système houlomoteur développé par Geps Techno repose sur la mise en circulation d'eau et la création d'un tourbillon en son sein. En profitant du phénomène de carène liquide, le concept est également déclinable en un système de stabilisation de navire ou de toute autre plateforme flottante. L'objectif à court terme de la société est le développement de cette technologie permettant la stabilisation et la récupération de l'énergie des vagues et pour lequel il reste des verrous technologiques à lever afin d'arriver à la viabilité et la rentabilité du système. Pour cela, Geps Techno a lancé en octobre 2015 le projet IHES (Integrated Harvesting Energy System) qui consiste à construire un démonstrateur de son concept de plateforme houlomotrice. Le projet IHES est un des projets de la feuille de route du plan "Navires écologiques" de la Nouvelle France Industrielle. Il est soutenu par Bpifrance dans le cadre du programme d'Investissements d'Avenir - Projets Industriels d'Avenir. Afin de maîtriser les objectifs de stabilisation et de récupération d'énergie, Geps Techno étudie les volets technologiques nécessaires permettant de passer de l'énergie disponible au niveau des vagues jusqu'à celle disponible au niveau de la turbine du houlomoteur. Les travaux de thèse soutenus par Fourestier en mai 2017 portaient sur un premier volet "Définition et contrôle des écoulements internes au système houlomoteur". A l'aide d'une modélisation des fluides numériques, ces derniers ont abouti à des modèles opérationnels caractérisant les écoulements internes. La présente thèse Cifre s'inscrit dans la continuité des travaux de Fourestier et traite d'un second volet "Modélisation du système couplé plateforme / houlomoteur". L'ensemble de ces travaux devra aboutir à un code de calcul opérationnel et corrélé à des résultats expérimentaux permettant d'étudier l'écoulement interne et le comportement du flotteur soumis à la houle
Geps Techno's development is based on an innovative concept of a floating structure intended to produce electrical energy from several renewable marine energy sources, including wave power. The wave power system developed by Geps Techno is based on circulating water and creating a vortex within it. By taking advantage of the liquid hull phenomenon, the concept can also be used as a stabilization system for a ship or any other floating platform. The short-term objective of the company is the development of this technology allowing the stabilization and recovery of wave energy and for which there remain technological obstacles to be removed in order to achieve the viability and profitability of the system. To do this, in October 2015 Geps Techno launched the IHES (Integrated Harvesting Energy System) project, which consists of building a demonstrator of its wave power platform concept. The IHES project is one of the projects of the roadmap of the "Ecological ships" plan of New Industrial France. It is supported by Bpifrance within the framework of the Investments for the Future - Industrial Projects for the Future program. In order to master the objectives of stabilization and energy recovery, Geps Techno is studying the technological aspects necessary to switch from the energy available at wave level to that available at the wave turbine turbine. The Ph.D. thesis work supported by Fourestier in May 2017 focused on a first part "Definition and control of internal flows in the wave power system". Using CFD modeling, the latter resulted in operational models characterizing internal flows. This Cifre Ph.D. thesis follows on from Fourestier's work and deals with a second part "Modeling of the coupled platform / wave power system". All of this work should lead to an operational computer code correlated with experimental results making it possible to study the internal flow and the behavior of the float subjected to swell
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Zhang, Jian. "Hydrodynamic behavior of packed-bed reactors on a floating platform : liquid distribution and drainage dynamics". Doctoral thesis, Université Laval, 2021. http://hdl.handle.net/20.500.11794/68634.

Texto completo
Resumen
Pour combler l'écart entre l'augmentation de la demande énergétique et l'épuisement de la production d'hydrocarbures onshore, l'exploitation des hydrocarbures offshore est de plus en plus envisagée, en particulier les gisements de gaz / pétrole dans les eaux plus profondes. En attendant, un grand nombre d'unités de traitement déployées pour la production d'hydrocarbures doivent respecter les contraintes environnementales conçues pour la protection maritime. Les systèmes tels que les réacteurs et les épurateurs à lit fixe embarqués deviennent inévitablement l'une des options les plus prometteuses pour atteindre ces deux objectifs. De nombreux efforts dans la littérature pour dévoiler l'hydrodynamique de l'écoulement multiphasé dans les lits garnis révèlent que des défis persistent soit dans leur conception / mise à l'échelle, soit dans leurs opérations. De plus, exposer ces réacteurs à des conditions marines difficiles telles que la convolution de la dynamique des navires et de l'hydrodynamique à l'intérieur des réacteurs à lit fixe conduit à des situations encore plus compliquées pour maintenir des performances de fonctionnement acceptables dans les conditions flottantes. Un grand nombre de preuves issues de la littérature a jusqu'à présent mis en évidence l'échec des colonnes garnies avec des garnissages aléatoires, des garnissages structurés ou des mousses à alvéoles ouvertes, pour empêcher la maldistribution des liquides dans les lits fixes destinés à fonctionner à bord de navires ou de platesformes flottantes. Les efforts de recherche doivent donc se poursuivre dans le but de trouver des composants internes robustes et capables de résilience contre la maldistribution des liquides dans les réacteurs / unités de séparation gaz-liquide. Ce projet de doctorat s’est proposé des recherches visant dans un premier temps de tester des internes disponibles commercialement pouvant préserver des performances similaires à celles des unités terrestres classiques. Au meilleur de notre connaissance, la sensibilité et la susceptibilité des réacteurs monolithes à une mauvaise distribution soumis à des conditions offshore n'ont pas encore été étudiées. Plutôt que de se concentrer uniquement sur une étude des lits monolithiques, le chapitre 1 opte pour une campagne expérimentale plus large comprenant un garnissage aléatoire et un garnissage en mousse à cellules ouvertes pour des comparaisons systématiques de la distribution des liquides en conditions flottantes. La distribution liquide des colonnes embarquées garnies de divers garnissages et pour une large plage de débit gaz / liquide est systématiquement comparée à l'aide d'un capteur à treillis métallique (WMS) et d'un émulateur hexapode à six degrés de liberté. La vraisemblance de conditions météorologiques extracôtières rudes pourrait menacer la sureté de l'exploitation des lits fixes, en particulier dans des situations extrêmes telles que des cyclones, des épisodes d'icebergs, etc. Pour assurer la sécurité du personnel et des installations, l’opération des colonnes garnies à bord doit être immédiatement interrompue pour éviter des problèmes de sécurité critiques sous de telles circonstances. Par conséquent, la base de connaissances sur la dynamique de drainage des liquides dans les lits flottants est iv essentielle pour assurer une vidange rapide du liquide. Néanmoins, l'étude de la dynamique du drainage liquide des lits fixes en conditions flottantes est à tout le moins rare. Par conséquent, le chapitre 2 se propose de comparer expérimentalement le drainage du liquide dans des colonnes garnies dans les conditions marines à celui observé dans une colonne statique verticale à l’instar des applications terrestres. En dehors de cela, l'influence des mouvements du navire (par exemple, cavalement, embardée, pilonnement, roulis, tangage, et lacet) à différentes amplitudes et périodes d'oscillation sur la dynamique de drainage des liquides est étudiée pour approfondir nos connaissances. Parallèlement à l'étude expérimentale, un modèle numérique Euler-Euler transitoire et en trois dimensions est utilisé en complément pour tenter de prédire la dynamique du drainage des liquides dans les lits flottants. D'autres facteurs susceptibles d'affecter la dynamique de drainage sont analysés par la simulation numérique. Ainsi, le chapitre 3 met en évidence l'influence globale des propriétés des liquides, de la structure du lit et des types de mouvement associé à la sollicitation marine. Par ailleurs, la campagne expérimentale en fournissant des données mesurables a permis de valider le modèle dans les conditions de roulis et de tangage testées au laboratoire.
To fill the gap between increasing energy demand and depletion of onshore hydrocarbon production, offshore hydrocarbon exploitation is increasingly contemplated especially the gas/oil fields in the deeper water. Meantime, large amount of deployed processing units for hydrocarbon productions must comply with the environmental codes designated for maritime protection. Systems such as embarked packed-bed reactors and scrubbers inevitably become one of the most promising options to achieve both purposes. Numerous efforts in literature to unveil the hydrodynamics of multiphase flow in packed beds reveal that challenges persist either in their design/scale-up or during the operations. Moreover, exposing these reactors to harsh marine conditions such as the convolution of ship dynamics and hydrodynamics inside packed-bed reactors leads to even more complex situations to maintain the proper operation performance of packed-bed reactors under floating conditions. A lot of evidence from literature has pointed out the failure of random and structured packings and open-cell foams, to prevent liquid maldistribution in packed beds destined to operate on-board sailing ships and floating platforms. Research efforts must therefore continue in the quest for robust internals capable of resilience against liquid maldistribution in gas-liquid reactors/separation units. The proposed Ph.D. research aims at firstly following a sound path to adapt commercially existing internals being capable of preserving performance similar to landbased packed beds. To the best of literature exploring, the sensitivity and susceptibility of monolith reactors to maldistribution subjected to offshore conditions have yet to be investigated. Rather than focusing on a study of monolith beds alone, Chapter 1 opts for a broader experimental campaign including a random packing and an open-cell foam packing for the sake of systematic comparisons of the liquid distribution under floating conditions. Liquid distribution of embarked columns packed with various internals under wide gas/liquid flow range is systematically compared with the assistance of wire mesh sensor (WMS) and six-degree-of-freedom emulator hexapod. Severe offshore weather conditions threaten the operation safety of floating packed beds especially encountering extreme situations such as cyclone, iceberg episodes and so forth. To ensure the safety of staff and facilities, the onboard packed columns must be immediately shutdown to avoid critical safety concerns under such circumstances. Therefore, knowledgebase of liquid draining dynamics in floating packed beds is the essence to ensure timely discharge of liquid. Nevertheless, the study regarding liquid drainage dynamics of packed beds under floating conditions is scarce to say the least. Then, Chapter 2 compares liquid draining of packed columns embarking on floating platforms with static land-based one experimentally. Other than that, the influence of ship motions (e.g., roll, roll & pitch, heave etc.) with different oscillation amplitudes and periods on liquid draining dynamics is investigated to deepen the insights. vi In parallel with the experimental study, a 3D transient Euler-Euler CFD model is employed as a supplementary analysis to further deepen the understanding of liquid drainage dynamics in floating packed beds. More factors possibly affecting the draining dynamics are exploited by numerical simulation. Consequently, Chapter 3 highlights the comprehensive influence of liquid properties, bed structure and moving types instead of focusing on impact of movements alone. Meanwhile, with sufficient body of experimental campaign, the validity and accuracy of model are strongly endorsed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Liou, Sy Yeuan. "Hybrid boundary integral equation method for the hydrodynamic analysis of marine structures in open and confined water". Thesis, University of Newcastle Upon Tyne, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.315619.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Najafian, G. "Local hydrodynamic force coefficients from field data and probabilistic analysis of offshore structures exposed to random wave loading". Thesis, University of Liverpool, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317214.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Allsop, Steven Christopher. "Hydrodynamic modelling for structural analysis of tidal stream turbine blades". Thesis, University of Exeter, 2018. http://hdl.handle.net/10871/33219.

Texto completo
Resumen
The predictable nature of the tides offers a regular, reliable source of renewable energy that can be harnessed using tidal stream turbines (TSTs). The UK's practically extractable tidal stream energy resource has the potential to supply around 7 % of the country's annual electricity demand. As of 2016, the world's first commercial scale arrays have been deployed around the UK and France. The harsh nature of the marine operating environment poses a number of engineering challenges, where the optimal turbine design solution remains under investigation. In this thesis, a numerical model is developed to assess the power production and hydrodynamic behaviour of horizontal axis tidal turbines. The developed model builds upon well established and computationally efficient Blade Element Momentum Theory (BEMT) method for modern three-bladed wind turbines. The main novel contribution of this thesis is extending the application to an alternative design of a ducted, high solidity and open centre TST. A validation study using measurements from multiple different scale model experimental tank tests has proven the applicability of the model and suitability of the imposed correction factors. The analytical modifications to account for ducted flow were subsequently indirectly verified, where predictions of turbine power and axial thrust forces under optimal operating speeds were within 2 % of those using more advanced computational fluid dynamics (CFD) methods. This thesis presents a commercial application case of two turbines designed by OpenHydro, examining the BEMT performance with a sophisticated blade resolved CFD study. A comparison of results finds that the model is capable of predicting the average peak power to within 12 %, however it under predicts thrust levels by an average of 35 %. This study concludes that the model is applicable to ducted turbine configurations, but is limited in capturing the complex flow interactions towards the open centre, which requires further investigation. The computational efficiency of the newly developed model allowed a structural analysis of the composite blades, thus demonstrating it is suitable to effectively evaluate engineering applications. Stresses are seen to be dominated by flap-wise bending moments, which peak at the mid-length of the blade. This tool will further enable EDF to perform third party assessments of the different turbine designs, to aid decision making for future projects.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Cathelain, Marie. "Développement d’un modèle de simulation déterministe pour l’étude du couplage entre un écoulement atmosphérique et un état de mer". Thesis, Ecole centrale de Nantes, 2017. http://www.theses.fr/2017ECDN0001/document.

Texto completo
Resumen
La physique de la couche limite atmosphérique en domaine océanique est principalement régie par les processus couplés liés au vent, à l’état de mer local, et à des effets de flottabilité. Leur compréhension reste néanmoins parcellaire et leurs descriptions théoriques et stochastiques sont pour le moins lacunaires, lorsqu’elles ne sont tout simplement pas mises à mal par les rares observations. Dans un contexte d’exploitation croissante de la ressource éolienne offshore, la mise en place de méthodes numériques visant à une description plus fine des propriétés turbulentes de cette couche limite sera une étape déterminante dans la réduction des coûts et l’optimisation des structures pour des rendements de récupération d’énergie améliorés. Ainsi, un outil numérique a été mis en place afin d’étudier le couplage entre un écoulement atmosphérique et l’état de mer. Un code Large-Eddy Simulation massivement parallèle pour la simulation des écoulements atmosphériques incompressibles développé par P. Sullivan au National Center for Atmospheric Research est couplé à un code spectral d’états de mer non-linéaires développé au Laboratoire de recherche en Hydrodynamique, Energétique et Environnement Atmosphérique. De nombreuses configurations de vents et d’états de mer sont modélisées. On montre que les lois semi empiriques souvent utilisées pour représenter la distribution verticale de la vitesse moyenne du vent sont une bonne approximation dans les situations où un petit état de mer est soumis à un fort vent. Néanmoins, dans le cas de houles très rapides se propageant dans des zones de faible vent, la création d’un jet de vent par la houle invalide ces lois semi-empiriques
Modelling the dynamic coupling of ocean-atmosphere systems requires a fundamental and quantitative understanding of the mechanisms governing the windwave interactions: despite numerous studies, our current understanding remains quite incomplete and, in certain conditions, sparse field observations contradict the usual theoretical and stochastic models. Within the context of a growing exploitation of the offshore wind energy and the development of met ocean models, a fine description of this resource is a key issue. Field experiments and numerical modelling have revealed that atmospheric stability and wave effects, including the dynamic sea surface roughness, are two major factors affecting the wind field over oceans. A numerical tool has been implemented in order to study the coupling between an atmospheric flow and the seastate. A massively parallel large-eddy simulation developed by P. Sullivan at the National Center for Atmospheric Research is then coupled to a High-Order Spectral wave model developed at the Hydrodynamics,Energetics & Atmospheric Environment Laboratory in Ecole Centrale de Nantes. Numerous configurations of wind and sea states are investigated. It appears that, under strongly forced wind conditions above a small sea state, the semi-empirical laws referred to as standards in the international guidelines are a good approximation for the vertical profile of the mean wind speed. However, for light winds overlying fast-moving swell, the presence of a wave induced wind jet is observed, invalidating the use of such logarithmic laws
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Scarfe, Bradley Edward. "Oceanographic Considerations for the Management and Protection of Surfing Breaks". The University of Waikato, 2008. http://hdl.handle.net/10289/2668.

Texto completo
Resumen
Although the physical characteristics of surfing breaks are well described in the literature, there is little specific research on surfing and coastal management. Such research is required because coastal engineering has had significant impacts to surfing breaks, both positive and negative. Strategic planning and environmental impact assessment methods, a central tenet of integrated coastal zone management (ICZM), are recommended by this thesis to maximise surfing amenities. The research reported here identifies key oceanographic considerations required for ICZM around surfing breaks including: surfing wave parameters; surfing break components; relationship between surfer skill, surfing manoeuvre type and wave parameters; wind effects on waves; currents; geomorphic surfing break categorisation; beach-state and morphology; and offshore wave transformations. Key coastal activities that can have impacts to surfing breaks are identified. Environmental data types to consider during coastal studies around surfing breaks are presented and geographic information systems (GIS) are used to manage and interpret such information. To monitor surfing breaks, a shallow water multibeam echo sounding system was utilised and a RTK GPS water level correction and hydrographic GIS methodology developed. Including surfing in coastal management requires coastal engineering solutions that incorporate surfing. As an example, the efficacy of the artificial surfing reef (ASR) at Mount Maunganui, New Zealand, was evaluated. GIS, multibeam echo soundings, oceanographic measurements, photography, and wave modelling were all applied to monitor sea floor morphology around the reef. Results showed that the beach-state has more cellular circulation since the reef was installed, and a groin effect on the offshore bar was caused by the structure within the monitoring period, trapping sediment updrift and eroding sediment downdrift. No identifiable shoreline salient was observed. Landward of the reef, a scour hole ~3 times the surface area of the reef has formed. The current literature on ASRs has primarily focused on reef shape and its role in creating surfing waves. However, this study suggests that impacts to the offshore bar, beach-state, scour hole and surf zone hydrodynamics should all be included in future surfing reef designs. More real world reef studies, including ongoing monitoring of existing surfing reefs are required to validate theoretical concepts in the published literature.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Narayanan, Suchithra. "Experimental analysis of a nonlinear moored structure". Thesis, 1999. http://hdl.handle.net/1957/33527.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

King, Paul E. "Deterministic and stochastic control of nonlinear oscillations in ocean structural systems". Thesis, 2006. http://hdl.handle.net/1957/29586.

Texto completo
Resumen
Complex oscillations including chaotic motions have been identified in off-shore and submerged mooring systems characterized by nonlinear fluid-structure interactions and restoring forces. In this paper, a means of controlling these nonlinear oscillations is addressed. When applied, the controller is able to drive the system to periodic oscillations of arbitrary periodicity. The controller applies a perturbation to the nonlinear system at prescribed time intervals to guide a trajectory towards a stable, periodic oscillatory state. The controller utilizes the pole placement method, a state feedback rule designed to render the system asymptotically stable. An outline of the proposed method is presented and applied to the fluid-structure interaction system and several examples of the controlled system are given. The effects of random noise in the excitation force are also investigated and the subsequent influence on the controller identified. A means of extending the controller design is explored to provide adequate control in the presence of moderate noise levels. Meanwhile, in the presence of over powering noise or system measurements that are not well defined, certain filtering and estimation techniques are investigated for their applicability. In particular, the Iterated Kalman Filter is investigated as a nonlinear state estimator of the nonlinear oscillations in these off-shore compliant structures. It is seen that although the inclusion of the nonlinearities is theoretically problematic, in practice, by applying the estimator in a judicious manner and then implementing the linear controllers outlined above, the system is able to estimate and control the nonlinear systems over a wide area of pseudo-stochastic regimes.
Graduation date: 2006
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Agarwal, Puneet 1977. "Structural reliability of offshore wind turbines". 2008. http://hdl.handle.net/2152/17723.

Texto completo
Resumen
Statistical extrapolation is required to predict extreme loads, associated with a target return period, for offshore wind turbines. In statistical extrapolation, “short-term" distributions of the load random variable(s) conditional on the environment are integrated with the joint probability distribution of environmental random variables (from wind, waves, current etc.) to obtain the so-called “long-term" distribution, from which long-term loads may be obtained for any return period. The accurate prediction of long-term extreme loads for offshore wind turbines, using efficient extrapolation procedures, is our main goal. While loads data, needed for extrapolation, are obtained by simulations in a design scenario, field data can be valuable for understanding the offshore environment and the resulting turbine response. We use limited field data from a 2MW turbine at the Blyth site in the United Kingdom, and study the influence of contrasting environmental (wind) regimes and associated waves at this site on long-term loads, derived using extrapolation. This study also highlights the need for efficient extrapolation procedures and for modeling nonlinear waves at sites with shallow water depths. An important first step in extrapolation is to establish robust short-term distributions of load extremes. Using data from simulations of a 5MW onshore turbine model, we compare empirical short-term load distributions when two alternative models for extremes--global and block maxima--are used. We develop a convergence criterion, based on controlling the uncertainty in rare load fractiles, which serves to assess whether or not an adequate number of simulations has been performed. To establish long-term loads for a 5MW offshore wind turbine, we employ an inverse reliability approach, which is shown to predict reasonably accurate long-term loads, compared to a more expensive direct integration approach. We show that blade pitching control actions can be a major source of response variability, due to which a large number of simulations may be required to obtain stable tails of short-term load distributions, and to predict accurate ultimate loads. We address model uncertainty as it pertains to wave models. We investigate the effect of using irregular nonlinear (second-order) waves, compared to irregular linear waves, on loads for an offshore wind turbine. We incorporate this nonlinear irregular wave model into a procedure for integrated wind-wave-response analysis of offshore wind turbines. We show that computed loads are generally somewhat larger with nonlinear waves and, hence, that modeling nonlinear waves is important is response simulations of offshore wind turbines and prediction of long-term loads.
text
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Gottlieb, Oded. "Nonlinear oscillations, bifurcations and chaos in ocean mooring systems". Thesis, 1991. http://hdl.handle.net/1957/36341.

Texto completo
Resumen
Complex nonlinear and chaotic responses have been recently observed in various compliant ocean systems. These systems are characterized by a nonlinear mooring restoring force and a coupled fluid-structure interaction exciting force. A general class of ocean mooring system models is formulated by incorporating a variable mooring configuration and the exact form of the hydrodynamic excitation. The multi-degree of freedom system, subjected to combined parametric and external excitation, is shown to be complex, coupled and strongly nonlinear. Stability analysis by a Liapunov function approach reveals global system attraction which ensures that solutions remain bounded for small excitation. Construction of the system's Poincare map and stability analysis of the map's fixed points correspond to system stability of near resonance periodic orbits. Investigation of nonresonant solutions is done by a local variational approach. Tangent and period doubling bifurcations are identified by both local stability analysis techniques and are further investigated to reveal global bifurcations. Application of Melnikov's method to the perturbed averaged system provides an approximate criterion for the existence of transverse homoclinic orbits resulting in chaotic system dynamics. Further stability analysis of the subharmonic and ultraharmonic solutions reveals a cascade of period doubling which is shown to evolve to a strange attractor. Investigation of the bifurcation criteria obtained reveals a steady state superstructure in the bifurcation set. This superstructure identifies a similar bifurcation pattern of coexisting solutions in the sub, ultra and ultrasubharmonic domains. Within this structure strange attractors appear when a period doubling sequence is infinite and when abrupt changes in the size of an attractor occur near tangent bifurcations. Parametric analysis of system instabilities reveals the influence of the convective inertial force which can not be neglected for large response and the bias induced by the quadratic viscous drag is found to be a controlling mechanism even for moderate sea states. Thus, stability analyses of a nonlinear ocean mooring system by semi-analytical methods reveal the existence of bifurcations identifying complex periodic and aperiodic nonlinear phenomena. The results obtained apply to a variety of nonlinear ocean mooring and towing system configurations. Extensions and applications of this research are discussed.
Graduation date: 1992
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Rodriguez, Marijuan Alberto. "Offshore Floating Platforms : Analysis of a solution for motion mitigation". Thesis, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215507.

Texto completo
Resumen
Recent events regarding energy policies throughout the globe and advances in technology are making offshore wind farms become a reality. Most offshore wind farms are still, however, built close to land masses, and need to be rigidly attached to the seabed in one way or another. In many countries, both public and private entities are developing new concepts of floating platforms to overcome the thirty to thirty-five-metre depth limit. Some of these new platforms use and adapt previous Oil and Gas platform concepts, while others are built up from scratch. This Master Thesis covers a hydrodynamic and structural analysis of a new concrete floating platform concept developed for medium to deep waters. This work is based on data from experimental model-scale tests performed in a wave tank and from numerical models using linear potential theory, limited here only to regular wave trains. The study focused on the behavior of the heave plates attached to the platform: test data was analyzed in order to find indicators of the largest dynamic pressures on the plates when only motion data was available, and the structural behavior of the plates was studied under different static pressure distributions using a commercial Finite Element Method software. The results from these analyses show that the normal accelerations of the plates -assumed rigid- strongly correlate with the dynamic pressures measured; and that the general structural behavior of the plate, in terms of deformations and bending moments, is well captured when the hydrodynamic load distribution is simplified into a uniformly distributed load of the same magnitude. The results obtained will help reduce the computational effort currently needed in the design of these floating structures, especially at some stages, when numerous scenarios, load cases and combinations need to be studied.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía