Artículos de revistas sobre el tema "Offshore structures, CFD"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 47 mejores artículos de revistas para su investigación sobre el tema "Offshore structures, CFD".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Vasilyev, Leonid, Konstantinos Christakos y Brian Hannafious. "Treating Wind Measurements Influenced by Offshore Structures with CFD Methods". Energy Procedia 80 (2015): 223–28. http://dx.doi.org/10.1016/j.egypro.2015.11.425.
Texto completoPeric, Milovan y Volker Bertram. "Trends in Industry Applications of Computational Fluid Dynamics for Maritime Flows". Journal of Ship Production and Design 27, n.º 04 (1 de noviembre de 2011): 194–201. http://dx.doi.org/10.5957/jspd.2011.27.4.194.
Texto completoA. Rahman, Mohd Asamudin, Muhammad Nadzrin Nazri, Ahmad Fitriadhy, Mohammad Fadhli Ahmad, Erwan Hafizi Kasiman, Mohd Azlan Musa, Fatin Alias y Mohd Hairil Mohd. "A Fundamental CFD Investigation of Offshore Structures for Artificial Coral Reef Development". CFD Letters 12, n.º 7 (30 de julio de 2020): 110–25. http://dx.doi.org/10.37934/cfdl.12.7.110125.
Texto completoVan den Abeele, F. y J. Vande Voorde. "Stability of offshore structures in shallow water depth". International Journal Sustainable Construction & Design 2, n.º 2 (6 de noviembre de 2011): 320–33. http://dx.doi.org/10.21825/scad.v2i2.20529.
Texto completoDecorte, Griet, Alessandro Toffoli, Geert Lombaert y Jaak Monbaliu. "On the Use of a Domain Decomposition Strategy in Obtaining Response Statistics in Non-Gaussian Seas". Fluids 6, n.º 1 (7 de enero de 2021): 28. http://dx.doi.org/10.3390/fluids6010028.
Texto completoDecorte, Griet, Alessandro Toffoli, Geert Lombaert y Jaak Monbaliu. "On the Use of a Domain Decomposition Strategy in Obtaining Response Statistics in Non-Gaussian Seas". Fluids 6, n.º 1 (7 de enero de 2021): 28. http://dx.doi.org/10.3390/fluids6010028.
Texto completoWu, Yanling. "Numerical tools to predict the environmental loads for offshore structures under extreme weather conditions". Modern Physics Letters B 32, n.º 12n13 (10 de mayo de 2018): 1840039. http://dx.doi.org/10.1142/s0217984918400390.
Texto completoDymarski, Paweł, Ewelina Ciba y Tomasz Marcinkowski. "Effective Method for Determining Environmental Loads on Supporting Structures for Offshore Wind Turbines". Polish Maritime Research 23, n.º 1 (1 de enero de 2016): 52–60. http://dx.doi.org/10.1515/pomr-2016-0008.
Texto completoDervilis, Nikolaos, A. C. W. Creech, A. E. Maguire, Ifigeneia Antoniadou, R. J. Barthorpe y Keith Worden. "An SHM View of a CFD Model of Lillgrund Wind Farm". Applied Mechanics and Materials 564 (junio de 2014): 164–69. http://dx.doi.org/10.4028/www.scientific.net/amm.564.164.
Texto completoRahman, Shaikh Atikur, Zubair Imam Syed, John V. Kurian y M. S. Liew. "Structural Response of Offshore Blast Walls under Accidental Explosion". Advanced Materials Research 1043 (octubre de 2014): 278–82. http://dx.doi.org/10.4028/www.scientific.net/amr.1043.278.
Texto completoJujuly, M. M., Mohammad Azizur Rahman, Aaron Maynard y Matthew Adey. "Hydrate-Induced Vibration in an Offshore Pipeline". SPE Journal 25, n.º 02 (31 de diciembre de 2019): 732–43. http://dx.doi.org/10.2118/187378-pa.
Texto completoLara, Javier L., Inigo J. Losada, Gabriel Barajas, Maria Maza y Benedetto Di Paolo. "RECENT ADVANCES IN 3D MODELLING OF WAVE-STRUCTURE INTERACTION WITH CFD MODELS". Coastal Engineering Proceedings, n.º 36 (30 de diciembre de 2018): 91. http://dx.doi.org/10.9753/icce.v36.waves.91.
Texto completoZhou, Xiao, Liu, Incecik, Peyrard, Li y Pan. "Numerical Modelling of Dynamic Responses of a Floating Offshore Wind Turbine Subject to Focused Waves". Energies 12, n.º 18 (9 de septiembre de 2019): 3482. http://dx.doi.org/10.3390/en12183482.
Texto completoStahlmann, Arne y Torsten Schlurmann. "INVESTIGATIONS ON SCOUR DEVELOPMENT AT TRIPOD FOUNDATIONS FOR OFFSHORE WIND TURBINES: MODELING AND APPLICATION". Coastal Engineering Proceedings 1, n.º 33 (25 de octubre de 2012): 90. http://dx.doi.org/10.9753/icce.v33.sediment.90.
Texto completoWang, Weizhi, Arun Kamath y Hans Bihs. "IRREGULAR WAVE MODELLING WITH CFD IN SULAFJORD FOR THE E39 PROJECT". Coastal Engineering Proceedings, n.º 36 (30 de diciembre de 2018): 45. http://dx.doi.org/10.9753/icce.v36.waves.45.
Texto completoTeigen, P., V. P. Przulj y B. A. Younis. "A CFD Investigation Into the Effects of Current Incidence on the Hydrodynamic Loading on a Deepwater TLP". Journal of Offshore Mechanics and Arctic Engineering 121, n.º 2 (1 de mayo de 1999): 109–15. http://dx.doi.org/10.1115/1.2830074.
Texto completoCui, W.-C. "A feasible study of fatigue life prediction for marine structures based on crack propagation analysis". Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment 217, n.º 1 (1 de marzo de 2003): 11–23. http://dx.doi.org/10.1243/147509003321623112.
Texto completoCornett, Andrew. "EXTREME WAVE PRESSURES AND LOADS ON A PILE-SUPPORTED WHARF DECK - INFLUENCES OF AIR GAP AND WAVE DIRECTION". Coastal Engineering Proceedings, n.º 36 (30 de diciembre de 2018): 5. http://dx.doi.org/10.9753/icce.v36.waves.5.
Texto completoVIDYA, C., J. SHEEJA y M. SEKAR. "TOWARDS REDUCING COMPUTATIONAL EFFORT IN VORTEX INDUCED VIBRATION PREDICTIONS OF A CYLINDRICAL RISER." Periódico Tchê Química 16, n.º 33 (20 de marzo de 2019): 841–53. http://dx.doi.org/10.52571/ptq.v16.n33.2019.856_periodico33_pgs_841_853.pdf.
Texto completoShang, Zhaohui, Huibin Yan, Weidong Ruan y Yong Bai. "A Study on a Quantitative Analysis Method for Fire and Explosion Risk Assessment of Offshore Platforms". Advances in Civil Engineering 2020 (9 de octubre de 2020): 1–20. http://dx.doi.org/10.1155/2020/3098719.
Texto completoDharmavasan, S. y W. D. Dover. "Nondestructive Evaluation of Offshore Structures Using Fracture Mechanics". Applied Mechanics Reviews 41, n.º 2 (1 de febrero de 1988): 36–49. http://dx.doi.org/10.1115/1.3151880.
Texto completoSeo, Junwon, William Schaffer, Monique Head, Mehdi Shokouhian y Eunsoo Choi. "Integrated FEM and CFD Simulation for Offshore Wind Turbine Structural Response". International Journal of Steel Structures 19, n.º 4 (29 de enero de 2019): 1112–24. http://dx.doi.org/10.1007/s13296-018-0191-y.
Texto completoAhmed, Mushtaq, Zafarullah Nizamani, Akihiko Nakayama y Montasir Osman. "Some Recent Fluid-Structure Interaction Approaches for the Wave Current Behaviour With Offshore Structures". CFD Letters 12, n.º 9 (30 de septiembre de 2020): 15–26. http://dx.doi.org/10.37934/cfdl.12.9.1526.
Texto completoElhanafi, Ahmed, Gregor Macfarlane y Dezhi Ning. "Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary Oscillating Water Column devices using CFD". Applied Energy 228 (octubre de 2018): 82–96. http://dx.doi.org/10.1016/j.apenergy.2018.06.069.
Texto completoLi, Ru-Yu, Jin-Jian Chen y Chen-Cong Liao. "Numerical Study on Interaction between Submarine Landslides and a Monopile Using CFD Techniques". Journal of Marine Science and Engineering 9, n.º 7 (2 de julio de 2021): 736. http://dx.doi.org/10.3390/jmse9070736.
Texto completoGoldan, Michael y Robert J. G. A. Kroon. "As-Built Product Modeling and Reverse Engineering in Shipbuilding Through Combined Digital Photogrammetry and CAD/CAM Technology". Journal of Ship Production 19, n.º 02 (1 de mayo de 2003): 98–104. http://dx.doi.org/10.5957/jsp.2003.19.2.98.
Texto completoLiu, Yichao, Daoyi Chen y Sunwei Li. "The artificial generation of the equilibrium marine atmospheric boundary layer for the CFD simulation of offshore wind turbines". Journal of Wind Engineering and Industrial Aerodynamics 183 (diciembre de 2018): 44–54. http://dx.doi.org/10.1016/j.jweia.2018.10.008.
Texto completoHan, Young-Soo, Jaejoon Lee, Jungmin Lee, Wonhyuk Lee y Kyungho Lee. "3D CAD data extraction and conversion for application of augmented/virtual reality to the construction of ships and offshore structures". International Journal of Computer Integrated Manufacturing 32, n.º 7 (11 de abril de 2019): 658–68. http://dx.doi.org/10.1080/0951192x.2019.1599440.
Texto completoBuschinelli, P., J. D. Salazar, D. Regner, D. Oliveira, M. Machado, G. Marcellino, D. C. Sales et al. "TARGETLESS PHOTOGRAMMETRY NETWORK SIMULATION FOR INSPECTION PLANNING IN OIL AND GAS INDUSTRY". ISPRS Annals of Photogrammetry, Remote Sensing and Spatial Information Sciences V-1-2020 (3 de agosto de 2020): 285–91. http://dx.doi.org/10.5194/isprs-annals-v-1-2020-285-2020.
Texto completoSacchi, Marco, Giuseppe De Natale, Volkhard Spiess, Lena Steinmann, Valerio Acocella, Marta Corradino, Shanaka de Silva et al. "A roadmap for amphibious drilling at the Campi Flegrei caldera: insights from a MagellanPlus workshop". Scientific Drilling 26 (2 de diciembre de 2019): 29–46. http://dx.doi.org/10.5194/sd-26-29-2019.
Texto completoMartin, Tobias y Hans Bihs. "A CFD Approach for Modelling the Fluid-Structure Interaction of Offshore Aquaculture Cages and Waves". Journal of Offshore Mechanics and Arctic Engineering, 14 de septiembre de 2021, 1–10. http://dx.doi.org/10.1115/1.4052421.
Texto completoAggarwal, Ankit, Pietro D. Tomaselli, Erik Damgaard Christensen y Hans Bihs. "Computational Fluid Dynamics Investigations of Breaking Focused Wave-Induced Loads on a Monopile and the Effect of Breaker Location". Journal of Offshore Mechanics and Arctic Engineering 142, n.º 2 (16 de noviembre de 2019). http://dx.doi.org/10.1115/1.4045187.
Texto completoChen Ong, Muk, Eirik Trygsland y Dag Myrhaug. "Numerical Study of Seabed Boundary Layer Flow Around Monopile and Gravity-Based Wind Turbine Foundations". Journal of Offshore Mechanics and Arctic Engineering 139, n.º 4 (5 de mayo de 2017). http://dx.doi.org/10.1115/1.4036208.
Texto completoNematbakhsh, Ali, Zhen Gao y Torgeir Moan. "Benchmarking of a Computational Fluid Dynamics-Based Numerical Wave Tank for Studying Wave Load Effects on Fixed and Floating Offshore Structures". Journal of Offshore Mechanics and Arctic Engineering 139, n.º 3 (5 de abril de 2017). http://dx.doi.org/10.1115/1.4035475.
Texto completo"Numerical Examination on the Effect of Internal Fluid Presssure on the Hydrodynamic Response of a Marine Riser". International Journal of Innovative Technology and Exploring Engineering 8, n.º 11S (11 de octubre de 2019): 1310–15. http://dx.doi.org/10.35940/ijitee.k1265.09811s19.
Texto completoGonçalves, Rodolfo Trentin, Shinichiro Hirabayashi, Guilherme Vaz y Hideyuki Suzuki. "Force Measurements of the Flow Around Arrays of Three and Four Columns With Different Geometry Sections, Spacing Ratios, and Incidence Angles". Journal of Offshore Mechanics and Arctic Engineering 142, n.º 2 (16 de noviembre de 2019). http://dx.doi.org/10.1115/1.4045212.
Texto completoBihs, Hans, Arun Kamath, Ankit Aggarwal y Csaba Pakozdi. "Efficient Wave Modeling Using Nonhydrostatic Pressure Distribution and Free Surface Tracking on Fixed Grids". Journal of Offshore Mechanics and Arctic Engineering 141, n.º 4 (8 de abril de 2019). http://dx.doi.org/10.1115/1.4043179.
Texto completoEbrahimnejad, L., K. D. Janoyan, H. Yadollahi Farsani, D. T. Valentine y P. Marzocca. "Efficient Predictions of Unsteady Viscous Flows Around Bluff Bodies by Aerodynamic Reduced Order Models". Journal of Offshore Mechanics and Arctic Engineering 136, n.º 1 (25 de octubre de 2013). http://dx.doi.org/10.1115/1.4025544.
Texto completoBihs, Hans, Weizhi Wang, Csaba Pakozdi y Arun Kamath. "REEF3D::FNPF—A Flexible Fully Nonlinear Potential Flow Solver". Journal of Offshore Mechanics and Arctic Engineering 142, n.º 4 (20 de febrero de 2020). http://dx.doi.org/10.1115/1.4045915.
Texto completoBihs, Hans, Mayilvahanan Alagan Chella, Arun Kamath y Øivind Asgeir Arntsen. "Numerical Investigation of Focused Waves and Their Interaction With a Vertical Cylinder Using REEF3D". Journal of Offshore Mechanics and Arctic Engineering 139, n.º 4 (10 de mayo de 2017). http://dx.doi.org/10.1115/1.4036206.
Texto completoChella, Mayilvahanan Alagan, Hans Bihs, Dag Myrhaug y Øivind Asgeir Arntsen. "Numerical Modeling of Breaking Wave Kinematics and Wave Impact Pressures on a Vertical Slender Cylinder". Journal of Offshore Mechanics and Arctic Engineering 141, n.º 5 (15 de febrero de 2019). http://dx.doi.org/10.1115/1.4042265.
Texto completoSasikumar, Athul, Arun Kamath, Onno Musch, Hans Bihs y Øivind A. Arntsen. "Numerical Modeling of Berm Breakwater Optimization With Varying Berm Geometry Using REEF3D". Journal of Offshore Mechanics and Arctic Engineering 141, n.º 1 (13 de agosto de 2018). http://dx.doi.org/10.1115/1.4040508.
Texto completoKoto, Jaswar y Abdul Khair Junaidi. "Analysis of Vortex-Induced Vibration of Riser using Spalart-Almaras Model". Jurnal Teknologi 69, n.º 7 (15 de julio de 2014). http://dx.doi.org/10.11113/jt.v69.3260.
Texto completoKamath, Arun, Hans Bihs y Øivind A. Arntsen. "Study of Water Impact and Entry of a Free Falling Wedge Using Computational Fluid Dynamics Simulations". Journal of Offshore Mechanics and Arctic Engineering 139, n.º 3 (28 de marzo de 2017). http://dx.doi.org/10.1115/1.4035384.
Texto completoFan, Ning, Wangcheng Zhang, Fauzan Sahdi y Tingkai Nian. "Evaluation of horizontal submarine slide impact force on pipeline via a modified hybrid geotechnical-fluid dynamics framework". Canadian Geotechnical Journal, 27 de agosto de 2021. http://dx.doi.org/10.1139/cgj-2021-0089.
Texto completo"Simulación numérica del sloshing". Revista ECIPeru, 10 de enero de 2019, 68–75. http://dx.doi.org/10.33017/reveciperu2011.0012/.
Texto completoTaylor, Rocky S., Ian J. Jordaan, Chuanke Li y Denise Sudom. "Local Design Pressures for Structures in Ice: Analysis of Full-Scale Data". Journal of Offshore Mechanics and Arctic Engineering 132, n.º 3 (17 de junio de 2010). http://dx.doi.org/10.1115/1.4000504.
Texto completo