Literatura académica sobre el tema "Oceanic Suess effect"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Oceanic Suess effect".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Oceanic Suess effect"
Liu, Bo, Katharina D. Six y Tatiana Ilyina. "Incorporating the stable carbon isotope <sup>13</sup>C in the ocean biogeochemical component of the Max Planck Institute Earth System Model". Biogeosciences 18, n.º 14 (28 de julio de 2021): 4389–429. http://dx.doi.org/10.5194/bg-18-4389-2021.
Texto completoEide, Marie, Are Olsen, Ulysses S. Ninnemann y Tor Eldevik. "A global estimate of the full oceanic 13 C Suess effect since the preindustrial". Global Biogeochemical Cycles 31, n.º 3 (marzo de 2017): 492–514. http://dx.doi.org/10.1002/2016gb005472.
Texto completoGruber, Nicolas, Charles D. Keeling, Robert B. Bacastow, Peter R. Guenther, Timothy J. Lueker, Martin Wahlen, Harro A. J. Meijer, Willem G. Mook y Thomas F. Stocker. "Spatiotemporal patterns of carbon-13 in the global surface oceans and the oceanic suess effect". Global Biogeochemical Cycles 13, n.º 2 (junio de 1999): 307–35. http://dx.doi.org/10.1029/1999gb900019.
Texto completoKing, Alexandra L. y William R. Howard. "Planktonic foraminiferal δ13C records from Southern Ocean sediment traps: New estimates of the oceanic Suess effect". Global Biogeochemical Cycles 18, n.º 2 (20 de mayo de 2004): n/a. http://dx.doi.org/10.1029/2003gb002162.
Texto completoHolden, P. B., N. R. Edwards, S. A. Müller, K. I. C. Oliver, R. M. Death y A. Ridgwell. "Controls on the spatial distribution of oceanic δ<sup>13</sup>C<sub>DIC</sub>". Biogeosciences Discussions 9, n.º 8 (31 de agosto de 2012): 11843–83. http://dx.doi.org/10.5194/bgd-9-11843-2012.
Texto completoDeng, Wenfeng, Xuefei Chen, Gangjian Wei, Ti Zeng y Jian-xin Zhao. "Decoupling of coral skeletal δ13C and solar irradiance over the past millennium caused by the oceanic Suess effect". Paleoceanography 32, n.º 2 (febrero de 2017): 161–71. http://dx.doi.org/10.1002/2016pa003049.
Texto completoBacastow, Robert B., Charles D. Keeling, Timothy J. Lueker, Martin Wahlen y Willem G. Mook. "The13C Suess Effect in the world surface oceans and its implications for oceanic uptake of CO2: Analysis of observations at Bermuda". Global Biogeochemical Cycles 10, n.º 2 (junio de 1996): 335–46. http://dx.doi.org/10.1029/96gb00192.
Texto completoJahn, A., K. Lindsay, X. Giraud, N. Gruber, B. L. Otto-Bliesner, Z. Liu y E. C. Brady. "Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)". Geoscientific Model Development 8, n.º 8 (5 de agosto de 2015): 2419–34. http://dx.doi.org/10.5194/gmd-8-2419-2015.
Texto completoJahn, A., K. Lindsay, X. Giraud, N. Gruber, B. L. Otto-Bliesner, Z. Liu y E. C. Brady. "Carbon isotopes in the ocean model of the Community Earth System Model (CESM1)". Geoscientific Model Development Discussions 7, n.º 6 (6 de noviembre de 2014): 7461–503. http://dx.doi.org/10.5194/gmdd-7-7461-2014.
Texto completoSmoliński, Szymon, Côme Denechaud, Gotje von Leesen, Audrey J. Geffen, Peter Grønkjær, Jane A. Godiksen y Steven E. Campana. "Differences in metabolic rate between two Atlantic cod (Gadus morhua) populations estimated with carbon isotopic composition in otoliths". PLOS ONE 16, n.º 4 (1 de abril de 2021): e0248711. http://dx.doi.org/10.1371/journal.pone.0248711.
Texto completoTesis sobre el tema "Oceanic Suess effect"
Leseurre, Coraline. "Mécanismes de contrôle de l’absorption de CO2 anthropique et de l’acidification des eaux dans les océans Atlantique Nord et Indien Austral". Electronic Thesis or Diss., Sorbonne université, 2022. http://www.theses.fr/2022SORUS484.
Texto completoThe ocean plays a very large role in the climate system due to the large exchange of carbon dioxide with the atmosphere and the recent shift of the exchanges towards a large oceanic sink of CO2 in the Anthropocene era. The North Atlantic and the Southern oceans are acknowledged to be major repositories of this anthropogenic carbon (Cant). Indeed, ~25% of the Cant penetrates through the surface waters of the North Atlantic and ~40% reside in the intermediate and mode waters of the Southern ocean. It has been established that this oceanic carbon sink presents a large time variability of seasonal to multidecadal times scales, but that is poorly known, resulting in large uncertainties in long term climate predictions. It has thus been recommended to focus observing efforts in the regions where the absorption of CO2 is large: the North Atlantic and the Southern oceans. In this frame, the study of the seasonal to decadal variability of the oceanic carbonate system is required to better understand the effects of current changes on the oceanic carbon cycle. I use data collected since the mid-1990s until 2021 within the framework of the two French surveys SURATLANT and OISO, in order to describe the spatial and temporal variability of parameters of the carbonate system (AT, CT, fCO2, pH and δ13CDIC) in the North Atlantic subpolar gyre (NASPG) as well as in the Indian sector of the Southern Ocean. I studied the physical and biogeochemical processes that control the evolution of fCO2, water acidification and the oceanic Suess effect, separating the anthropogenic induced changes from natural variability. The long-term evolution of fCO2 and pH during the period samples has a similar magnitude to the atmospheric CO2 increase and the overall surface ocean trends. Nonetheless, results can differ from this average view, depending on season, the particular region or specific periods. Cant increase has been identified as the prime driver controlling the observed changes in fCO2 and pH, but other processes modulate these tendencies. For instance, the warming (cooling) of the surface waters will increase (restrain) the increase of fCO2 and the decrease of pH. Furthermore, an increase of AT has been identified in both regions, which partially limit the increase of ocean acidification induced by Cant increase. Also, the data suggest that changes have been smaller since 2010, with even some reversal in the increase in fCO2 and ocean acidification, both in the NASPG than in the Antarctic region of the Southern Indian ocean. 13CDIC data seem to reinforce these conclusions and to identify a different Suess effect in the two regions. This additional parameter has nonetheless been less sampled and the current data do not allow to clearly identify the change since 2010. My work supports the need to continue the long-term observations in these key regions for anthropogenic CO2 export to the deep ocean, in order to better characterize the changes in anthropogenic carbon, the oceanic Suess effect, and the acidification of surface waters for the next decades
Capítulos de libros sobre el tema "Oceanic Suess effect"
Gattuso, Jean-Pierre y Lina Hansson. "Acidification: Background and History". En Ocean Acidification. Oxford University Press, 2011. http://dx.doi.org/10.1093/oso/9780199591091.003.0006.
Texto completoActas de conferencias sobre el tema "Oceanic Suess effect"
Wagner, Amy, Thomas Williams, Elisabeth Sikes y Ellen Martin. "Measuring Ocean Uptake of Anthropogenic CO2 in the Southeastern Indian Ocean: Changes in the 13C Suess Effect over the Last Decade". En Goldschmidt2020. Geochemical Society, 2020. http://dx.doi.org/10.46427/gold2020.2701.
Texto completo