Siga este enlace para ver otros tipos de publicaciones sobre el tema: Numbers.

Artículos de revistas sobre el tema "Numbers"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Numbers".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Montémont, Véronique. "Roubaud’s number on numbers". Journal of Romance Studies 7, n.º 3 (diciembre de 2007): 111–21. http://dx.doi.org/10.3828/jrs.7.3.111.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Carbó-Dorca, Ramon. "Mersenne Numbers, Recursive Generation of Natural Numbers, and Counting the Number of Prime Numbers". Applied Mathematics 13, n.º 06 (2022): 538–43. http://dx.doi.org/10.4236/am.2022.136034.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Sudhakaraiah, A., A. Madhankumar, Pagidi Obulesu y A. Lakshmi Sowjanya. "73 Is the Only Largest Prime Power Number and Composite Power Numbers". International Journal of Science and Research (IJSR) 12, n.º 11 (5 de noviembre de 2023): 1318–23. http://dx.doi.org/10.21275/sr231118184617.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Steele, G. Ander. "Carmichael numbers in number rings". Journal of Number Theory 128, n.º 4 (abril de 2008): 910–17. http://dx.doi.org/10.1016/j.jnt.2007.08.009.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Hofweber, T. "Number Determiners, Numbers, and Arithmetic". Philosophical Review 114, n.º 2 (1 de abril de 2005): 179–225. http://dx.doi.org/10.1215/00318108-114-2-179.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

., Jyoti. "Rational Numbers". Journal of Advances and Scholarly Researches in Allied Education 15, n.º 5 (1 de julio de 2018): 220–22. http://dx.doi.org/10.29070/15/57856.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Boast, Carl A. y Paul R. Sanberg. "Locomotor behavior: numbers, numbers, numbers!" Pharmacology Biochemistry and Behavior 27, n.º 3 (julio de 1987): 543. http://dx.doi.org/10.1016/0091-3057(87)90364-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

KÖKEN, Fikri y Emre KANKAL. "Altered Numbers of Fibonacci Number Squared". Journal of New Theory, n.º 45 (31 de diciembre de 2023): 73–82. http://dx.doi.org/10.53570/jnt.1368751.

Texto completo
Resumen
We investigate two types of altered Fibonacci numbers obtained by adding or subtracting a specific value $\{a\}$ from the square of the $n^{th}$ Fibonacci numbers $G^{(2)}_{F(n)}(a)$ and $H^{(2)}_{F(n)}(a)$. These numbers are significant as they are related to the consecutive products of the Fibonacci numbers. As a result, we establish consecutive sum-subtraction relations of altered Fibonacci numbers and their Binet-like formulas. Moreover, we explore greatest common divisor (GCD) sequences of r-successive terms of altered Fibonacci numbers represented by $\left\{G^{(2)}_{F(n), r}(a)\right\}$ and $\left\{H^{(2)}_{F(n), r}(a)\right\}$ such that $r\in\{1,2,3\}$ and $a\in\{1,4\}$. The sequences are based on the GCD properties of consecutive terms of the Fibonacci numbers and structured as periodic or Fibonacci sequences.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Jędrzejak, Tomasz. "Congruent numbers over real number fields". Colloquium Mathematicum 128, n.º 2 (2012): 179–86. http://dx.doi.org/10.4064/cm128-2-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Fu, Ruiqin, Hai Yang y Jing Wu. "The Perfect Numbers of Pell Number". Journal of Physics: Conference Series 1237 (junio de 2019): 022041. http://dx.doi.org/10.1088/1742-6596/1237/2/022041.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Day, Sophie, Celia Lury y Nina Wakeford. "Number ecologies: numbers and numbering practices". Distinktion: Journal of Social Theory 15, n.º 2 (4 de mayo de 2014): 123–54. http://dx.doi.org/10.1080/1600910x.2014.923011.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

AKTAŞ, KEVSER y M. RAM MURTY. "On the number of special numbers". Proceedings - Mathematical Sciences 127, n.º 3 (31 de enero de 2017): 423–30. http://dx.doi.org/10.1007/s12044-016-0326-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Felka, Katharina. "Number words and reference to numbers". Philosophical Studies 168, n.º 1 (3 de abril de 2013): 261–82. http://dx.doi.org/10.1007/s11098-013-0129-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

De Koninck, Jean-Marie y Florian Luca. "Counting the number of economical numbers". Publicationes Mathematicae Debrecen 68, n.º 1-2 (1 de enero de 2006): 97–113. http://dx.doi.org/10.5486/pmd.2006.3171.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Fellows, Michael R., Serge Gaspers y Frances A. Rosamond. "Parameterizing by the Number of Numbers". Theory of Computing Systems 50, n.º 4 (29 de octubre de 2011): 675–93. http://dx.doi.org/10.1007/s00224-011-9367-y.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Goddard, Cliff. "The conceptual semantics of numbers and counting". Functions of Language 16, n.º 2 (22 de octubre de 2009): 193–224. http://dx.doi.org/10.1075/fol.16.2.02god.

Texto completo
Resumen
This study explores the conceptual semantics of numbers and counting, using the natural semantic metalanguage (NSM) technique of semantic analysis (Wierzbicka 1996; Goddard & Wierzbicka (eds.) 2002). It first argues that the concept of a number in one of its senses (number1, roughly, “number word”) and the meanings of low number words, such as one, two, and three, can be explicated directly in terms of semantic primes, without reference to any counting procedures or practices. It then argues, however, that the larger numbers, and the productivity of the number sequence, depend on the concept and practice of counting, in the intransitive sense of the verb. Both the intransitive and transitive senses of counting are explicated, and the semantic relationship between them is clarified. Finally, the study moves to the semantics of abstract numbers (number2), roughly, numbers as represented by numerals, e.g. 5, 15, 27, 36, as opposed to number words. Though some reference is made to cross-linguistic data and cultural variation, the treatment is focused primarily on English.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Froman, Robin D. "Numbers, numbers everywhere?" Research in Nursing & Health 27, n.º 3 (2004): 145–47. http://dx.doi.org/10.1002/nur.20020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Thompson, K., J. G. Hodgson, J. P. Grime, I. H. Rorison, S. R. Band y R. E. Spencer. "Ellenberg numbers revisited". Phytocoenologia 23, n.º 1-4 (15 de diciembre de 1993): 277–89. http://dx.doi.org/10.1127/phyto/23/1993/277.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Bhutani, Kiran R. y Alexander B. Levin. "Graceful numbers". International Journal of Mathematics and Mathematical Sciences 29, n.º 8 (2002): 495–99. http://dx.doi.org/10.1155/s0161171202007615.

Texto completo
Resumen
We construct a labeled graphD(n)that reflects the structure of divisors of a given natural numbern. We define the concept of graceful numbers in terms of this associated graph and find the general form of such a number. As a consequence, we determine which graceful numbers are perfect.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Adédji, Kouèssi Norbert, Japhet Odjoumani y Alain Togbé. "Padovan and Perrin numbers as products of two generalized Lucas numbers". Archivum Mathematicum, n.º 4 (2023): 315–37. http://dx.doi.org/10.5817/am2023-4-315.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Ndiaye, Mady. "Origin of Sexy Prime Numbers, Origin of Cousin Prime Numbers, Equations from Supposedly Prime Numbers, Origin of the Mersenne Number, Origin of the Fermat Number". Advances in Pure Mathematics 14, n.º 05 (2024): 321–32. http://dx.doi.org/10.4236/apm.2024.145018.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Kazda, Alexandr y Petr Kùrka. "Representing real numbers in Möbius number systems". Actes des rencontres du CIRM 1, n.º 1 (2009): 35–39. http://dx.doi.org/10.5802/acirm.7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Smil, Vaclav. "Unemployment: Pick a number [Numbers Don't Lie]". IEEE Spectrum 54, n.º 5 (mayo de 2017): 24. http://dx.doi.org/10.1109/mspec.2017.7906894.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Frougny, Christiane y Karel Klouda. "Rational base number systems forp-adic numbers". RAIRO - Theoretical Informatics and Applications 46, n.º 1 (22 de agosto de 2011): 87–106. http://dx.doi.org/10.1051/ita/2011114.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Webb, William A. "The N-Number Game for Real Numbers". European Journal of Combinatorics 8, n.º 4 (octubre de 1987): 457–60. http://dx.doi.org/10.1016/s0195-6698(87)80053-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Daileda, Ryan C., Raju Krishnamoorthy y Anton Malyshev. "Maximal class numbers of CM number fields". Journal of Number Theory 130, n.º 4 (abril de 2010): 936–43. http://dx.doi.org/10.1016/j.jnt.2009.09.013.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Kovács, B. "Representation of complex numbers in number systems". Acta Mathematica Hungarica 58, n.º 1-2 (marzo de 1991): 113–20. http://dx.doi.org/10.1007/bf01903553.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Jen-Shiun Chiang y Mi Lu. "Floating-point numbers in residue number systems". Computers & Mathematics with Applications 22, n.º 10 (1991): 127–40. http://dx.doi.org/10.1016/0898-1221(91)90200-n.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Chang, Ku-Young y Soun-Hi Kwon. "Class numbers of imaginary abelian number fields". Proceedings of the American Mathematical Society 128, n.º 9 (27 de abril de 2000): 2517–28. http://dx.doi.org/10.1090/s0002-9939-00-05555-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Figotin, A., A. Gordon, J. Quinn, N. Stavrakas y S. Molchanov. "Occupancy Numbers in Testing Random Number Generators". SIAM Journal on Applied Mathematics 62, n.º 6 (enero de 2002): 1980–2011. http://dx.doi.org/10.1137/s0036139900366869.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Bertin, Marie José y Toufik Zaïmi. "Complex Pisot numbers in algebraic number fields". Comptes Rendus Mathematique 353, n.º 11 (noviembre de 2015): 965–67. http://dx.doi.org/10.1016/j.crma.2015.09.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

De Koninck, J. M., N. Doyon y I. Kátai. "Counting the number of twin Niven numbers". Ramanujan Journal 17, n.º 1 (12 de julio de 2008): 89–105. http://dx.doi.org/10.1007/s11139-008-9127-z.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Caglayan, Günhan. "Covering a Triangular Number with Pentagonal Numbers". Mathematical Intelligencer 42, n.º 1 (16 de diciembre de 2019): 55. http://dx.doi.org/10.1007/s00283-019-09953-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Chang, Ku-Young y Soun-Hi Kwon. "The imaginary abelian number fields with class numbers equal to their genus class numbers". Journal de Théorie des Nombres de Bordeaux 12, n.º 2 (2000): 349–65. http://dx.doi.org/10.5802/jtnb.283.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

DeGeorges, Kathie M. "Numbers, I Need Numbers!" AWHONN Lifelines 3, n.º 2 (abril de 1999): 49–50. http://dx.doi.org/10.1111/j.1552-6356.1999.tb01082.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Lee, Mercia. "Numbers, numbers all around". Practical Pre-School 2007, n.º 75 (abril de 2007): 5–6. http://dx.doi.org/10.12968/prps.2007.1.75.38593.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Locher, Helmut. "On the number of good approximations of algebraic numbers by algebraic numbers of bounded degree". Acta Arithmetica 89, n.º 2 (1999): 97–122. http://dx.doi.org/10.4064/aa-89-2-97-122.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Azarija, Jernej y Riste Škrekovski. "Euler's idoneal numbers and an inequality concerning minimal graphs with a prescribed number of spanning trees". Mathematica Bohemica 138, n.º 2 (2013): 121–31. http://dx.doi.org/10.21136/mb.2013.143285.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Pokorna, Pavla y Dick Tibboel. "Numbers, Numbers: Great, Great…But?!*". Pediatric Critical Care Medicine 21, n.º 9 (septiembre de 2020): 844–45. http://dx.doi.org/10.1097/pcc.0000000000002371.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Hernon, Peter. "Numbers and “Damn” GPO Numbers". Government Information Quarterly 16, n.º 1 (enero de 1999): 1–4. http://dx.doi.org/10.1016/s0740-624x(99)80012-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Kulyabov, D. S., A. V. Korolkova y M. N. Gevorkyan. "Hyperbolic numbers as Einstein numbers". Journal of Physics: Conference Series 1557 (mayo de 2020): 012027. http://dx.doi.org/10.1088/1742-6596/1557/1/012027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Çelik, Songül, İnan Durukan y Engin Özkan. "New recurrences on Pell numbers, Pell-Lucas numbers, Jacobsthal numbers, and Jacobsthal-Lucas numbers". Chaos, Solitons & Fractals 150 (septiembre de 2021): 111173. http://dx.doi.org/10.1016/j.chaos.2021.111173.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Trespalacios, Jesús y Barbara Chamberline. "Pearl diver: Identifying numbers on a number line". Teaching Children Mathematics 18, n.º 7 (marzo de 2012): 446–47. http://dx.doi.org/10.5951/teacchilmath.18.7.0446.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Geroldinger, A. "Factorization of natural numbers in algebraic number fields". Acta Arithmetica 57, n.º 4 (1991): 365–73. http://dx.doi.org/10.4064/aa-57-4-365-373.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Liu, Hong-Quan. "The number of squarefull numbers in an interval". Acta Arithmetica 64, n.º 2 (1993): 129–49. http://dx.doi.org/10.4064/aa-64-2-129-149.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Chen, Kwang-Wu. "Median Bernoulli Numbers and Ramanujan’s Harmonic Number Expansion". Mathematics 10, n.º 12 (12 de junio de 2022): 2033. http://dx.doi.org/10.3390/math10122033.

Texto completo
Resumen
Ramanujan-type harmonic number expansion was given by many authors. Some of the most well-known are: Hn∼γ+logn−∑k=1∞Bkk·nk, where Bk is the Bernoulli numbers. In this paper, we rewrite Ramanujan’s harmonic number expansion into a similar form of Euler’s asymptotic expansion as n approaches infinity: Hn∼γ+c0(h)log(q+h)−∑k=1∞ck(h)k·(q+h)k, where q=n(n+1) is the nth pronic number, twice the nth triangular number, γ is the Euler–Mascheroni constant, and ck(x)=∑j=0kkjcjxk−j, with ck is the negative of the median Bernoulli numbers. Then, 2cn=∑k=0nnkBn+k, where Bn is the Bernoulli number. By using the result obtained, we present two general Ramanujan’s asymptotic expansions for the nth harmonic number. For example, Hn∼γ+12log(q+13)−1180(q+13)2∑j=0∞bj(r)(q+13)j1/r as n approaches infinity, where bj(r) can be determined.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Backelin, Jörgen. "On the number of semigroups of natural numbers." MATHEMATICA SCANDINAVICA 66 (1 de junio de 1990): 197. http://dx.doi.org/10.7146/math.scand.a-12304.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Korhonen, Risto. "Approximation of real numbers with rational number sequences". Proceedings of the American Mathematical Society 137, n.º 01 (14 de agosto de 2008): 107–13. http://dx.doi.org/10.1090/s0002-9939-08-09479-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Louboutin, Stéphane. "Computation of class numbers of quadratic number fields". Mathematics of Computation 71, n.º 240 (21 de noviembre de 2001): 1735–44. http://dx.doi.org/10.1090/s0025-5718-01-01367-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Shah Ali, H. A. "92.02 The number of S.P numbers is finite". Mathematical Gazette 92, n.º 523 (marzo de 2008): 64–65. http://dx.doi.org/10.1017/s0025557200182543.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía