Literatura académica sobre el tema "Numbers, Rational"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Numbers, Rational".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Numbers, Rational"
., Jyoti. "Rational Numbers". Journal of Advances and Scholarly Researches in Allied Education 15, n.º 5 (1 de julio de 2018): 220–22. http://dx.doi.org/10.29070/15/57856.
Texto completoScott Malcom, P. "Understanding Rational Numbers". Mathematics Teacher 80, n.º 7 (octubre de 1987): 518–21. http://dx.doi.org/10.5951/mt.80.7.0518.
Texto completoLennerstad, Håkan y Lars Lundberg. "Decomposing rational numbers". Acta Arithmetica 145, n.º 3 (2010): 213–20. http://dx.doi.org/10.4064/aa145-3-1.
Texto completoPEYTON JONES, SIMON. "12 Rational Numbers". Journal of Functional Programming 13, n.º 1 (enero de 2003): 149–52. http://dx.doi.org/10.1017/s0956796803001412.
Texto completoFrougny, Christiane y Karel Klouda. "Rational base number systems forp-adic numbers". RAIRO - Theoretical Informatics and Applications 46, n.º 1 (22 de agosto de 2011): 87–106. http://dx.doi.org/10.1051/ita/2011114.
Texto completoXin Liu, Xin Liu, Xiaomeng Liu Xin Liu, Dan Luo Xiaomeng Liu, Gang Xu Dan Luo y Xiu-Bo Chen Gang Xu. "Confidentially Compare Rational Numbers under the Malicious Model". 網際網路技術學刊 25, n.º 3 (mayo de 2024): 355–63. http://dx.doi.org/10.53106/160792642024052503002.
Texto completoRoy, Damien y Johannes Schleischitz. "Numbers with Almost all Convergents in a Cantor Set". Canadian Mathematical Bulletin 62, n.º 4 (3 de diciembre de 2018): 869–75. http://dx.doi.org/10.4153/s0008439518000450.
Texto completoBelin, Mervenur y Gülseren Karagöz Akar. "Exploring Real Numbers as Rational Number Sequences With Prospective Mathematics Teachers". Mathematics Teacher Educator 9, n.º 1 (1 de septiembre de 2020): 63–87. http://dx.doi.org/10.5951/mte.2020.9999.
Texto completoKorhonen, Risto. "Approximation of real numbers with rational number sequences". Proceedings of the American Mathematical Society 137, n.º 01 (14 de agosto de 2008): 107–13. http://dx.doi.org/10.1090/s0002-9939-08-09479-3.
Texto completoGong, Linming, Bo Yang, Tao Xue, Jinguang Chen y Wei Wang. "Secure rational numbers equivalence test based on threshold cryptosystem with rational numbers". Information Sciences 466 (octubre de 2018): 44–54. http://dx.doi.org/10.1016/j.ins.2018.07.046.
Texto completoTesis sobre el tema "Numbers, Rational"
Ketkar, Pallavi S. (Pallavi Subhash). "Primitive Substitutive Numbers are Closed under Rational Multiplication". Thesis, University of North Texas, 1998. https://digital.library.unt.edu/ark:/67531/metadc278637/.
Texto completoCoward, Daniel R. "Sums of two rational cubes". Thesis, University of Oxford, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.320587.
Texto completoBrown, Bruce John Lindsay. "The initial grounding of rational numbers : an investigation". Thesis, Rhodes University, 2007. http://hdl.handle.net/10962/d1006351.
Texto completoShaughnessy, John F. "Finding Zeros of Rational Quadratic Forms". Scholarship @ Claremont, 2014. http://scholarship.claremont.edu/cmc_theses/849.
Texto completoLozier, Stephane. "On simultaneous approximation to a real number and its cube by rational numbers". Thesis, University of Ottawa (Canada), 2010. http://hdl.handle.net/10393/28701.
Texto completoMillsaps, Gayle M. "Interrelationships between teachers' content knowledge of rational number, their instructional practice, and students' emergent conceptual knowledge of rational number". Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1124225634.
Texto completoTitle from first page of PDF file. Document formatted into pages; contains xviii, 339 p.; also includes graphics (some col.). Includes bibliographical references (p. 296-306). Available online via OhioLINK's ETD Center
Carbone, Rose Elaine. "Elementary Teacher Candidates’ Understanding of Rational Numbers: An International Perspective". Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-79565.
Texto completoClark, David Alan. "The Euclidean algorithm for Galois extensions of the rational numbers". Thesis, McGill University, 1992. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=39408.
Texto completoLet E be an elliptic curve over a number field F. Suppose ($F: doubq rbrack le 4$ and $F(E lbrack q rbrack ) not subseteq F$ for all primes q such that F contains a primitive $q sp{ rm th}$ root of unity, then the reduced elliptic curve $ tilde{E}(F sb{ bf p})$ is cyclic infinitely often. In general, if $ Gamma$ a subgroup of $E(F)$ with the range of $ Gamma$ sufficiently large, there are infinitely many prime ideals p of F such that the reduced curve $ tilde{E}(F sb{ bf p}) = Gamma sb{ bf p}$, where $ Gamma sb{ bf p}$ is the reduction modulo p of $ Gamma$.
Bruyns, P. "Aspects of the group of homeomorphisms of the rational numbers". Thesis, University of Oxford, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.375224.
Texto completoLORIO, MARCELO NASCIMENTO. "APPROXIMATIONS OF REAL NUMBERS BY RATIONAL NUMBERS: WHY THE CONTINUED FRACTIONS CONVERGING PROVIDE THE BEST APPROXIMATIONS?" PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2014. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=23981@1.
Texto completoCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
Frações Contínuas são representações de números reais que independem da base de numeração escolhida. Quando se trata de aproximar números reais por frações, a escolha da base dez oculta, frequentemente, aproximações mais eficientes do que as exibe. Integrar conceitos de aproximações de números reais por frações contínuas com aspectos geométricos traz ao assunto uma abordagem diferenciada e bastante esclarecedora. O algoritmo de Euclides, por exemplo, ao ganhar significado geométrico, se torna um poderoso argumento para a visualização dessas aproximações. Os teoremas de Dirichlet, de Hurwitz-Markov e de Lagrange comprovam, definitivamente, que as melhores aproximações de números reais veem das frações contínuas, estimando seus erros com elegância técnica matemática incontestável.
Continued fractions are representations of real numbers that are independent of the choice of the numerical basis. The choice of basis ten frequently hides more than shows efficient approximations of real numbers by rational ones. Integrating approximations of real numbers by continued fractions with geometrical interpretations clarify the subject. The study of geometrical aspects of Euclids algorithm, for example, is a powerful method for the visualization of continued fractions approximations. Theorems of Dirichlet, Hurwitz-Markov and Lagrange show that, definitely, the best approximations of real numbers come from continued fractions, and the errors are estimated with elegant mathematical technique.
Libros sobre el tema "Numbers, Rational"
Rational numbers: Poems. [Kirksville, Mo.]: Truman State University Press, 2000.
Buscar texto completoH, Salzmann, ed. The classical fields: Structural features of the real and rational numbers. Cambridge: Cambridge University Press, 2007.
Buscar texto completoBellos, Alex. Here's Looking at Euclid: A Surprising Excursion through the Astonishing World of Math. New York: Free Press, 2010.
Buscar texto completoBellos, Alex. Here's looking at Euclid: A surprising excursion through the astonishing world of math. New York: Free Press, 2010.
Buscar texto completoHertzberg, Hendrik. One million. New York: Times Books, 1993.
Buscar texto completoHertzberg, Hendrik. One million. New York: Abrams Image, 2009.
Buscar texto completoS, Bezuk Nadine, ed. Understanding rational numbers and proportions. Reston, Va: National Council of Teachers of Mathematics, 1994.
Buscar texto completoP, Carpenter Thomas, Fennema Elizabeth y Romberg Thomas A, eds. Rational numbers: An integration of research. Hillsdale, N.J: Lawrence Erlbaum Associates, 1992.
Buscar texto completoMary, Stroh y Sopris West Inc, eds. TransMath: Making sense of rational numbers. Longmont, Colo: Cambium Learning/Sopris West, 2010.
Buscar texto completoLappan, Glenda. Bits and pieces I: Understanding rational numbers. Palo Alto, CA: Dale Seymour Publications, 1998.
Buscar texto completoCapítulos de libros sobre el tema "Numbers, Rational"
Eriksson, Kenneth, Donald Estep y Claes Johnson. "Rational Numbers". En Applied Mathematics: Body and Soul, 71–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-662-05796-4_7.
Texto completoBhattacharjee, Meenaxi, Rögnvaldur G. Möller, Dugald Macpherson y Peter M. Neumann. "Rational Numbers". En Notes on Infinite Permutation Groups, 77–86. Gurgaon: Hindustan Book Agency, 1997. http://dx.doi.org/10.1007/978-93-80250-91-5_9.
Texto completoBhattacharjee, Meenaxi, Dugald Macpherson, Rögnvaldur G. Möller y Peter M. Neumann. "Rational numbers". En Lecture Notes in Mathematics, 77–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0092559.
Texto completoShah, Nita H. y Vishnuprasad D. Thakkar. "Rational Numbers". En Journey from Natural Numbers to Complex Numbers, 47–60. Boca Raton : CRC Press, 2021. | Series: Advances in mathematics and engineering: CRC Press, 2020. http://dx.doi.org/10.1201/9781003105244-3.
Texto completoNoël, Marie-Pascale y Giannis Karagiannakis. "Rational numbers". En Effective Teaching Strategies for Dyscalculia and Learning Difficulties in Mathematics, 236–94. London: Routledge, 2022. http://dx.doi.org/10.4324/b22795-6.
Texto completoOvchinnikov, Sergei. "Rational Numbers". En Real Analysis: Foundations, 1–30. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-64701-8_1.
Texto completoStillwell, John. "Rational Points". En Numbers and Geometry, 111–42. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-0687-3_4.
Texto completoKramer, Jürg y Anna-Maria von Pippich. "The Rational Numbers". En Springer Undergraduate Mathematics Series, 93–139. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-69429-0_3.
Texto completoStillwell, John. "The Rational Numbers". En Elements of Algebra, 18–37. New York, NY: Springer New York, 1994. http://dx.doi.org/10.1007/978-1-4757-3976-3_2.
Texto completoKay, Anthony. "Rational Numbers, ℚ". En Number Systems, 107–48. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9780429059353-6.
Texto completoActas de conferencias sobre el tema "Numbers, Rational"
Vălcan, Teodor-Dumitru. "Structures of Fields of Rational Numbers, Isomorphic Between Them". En 10th International Conference Education, Reflection, Development. European Publisher, 2023. http://dx.doi.org/10.15405/epes.23056.8.
Texto completoPion, Sylvain y Chee K. Yap. "Constructive root bound for k-ary rational input numbers". En the nineteenth conference. New York, New York, USA: ACM Press, 2003. http://dx.doi.org/10.1145/777792.777831.
Texto completoCheng, Howard y Eugene Zima. "On accelerated methods to evaluate sums of products of rational numbers". En the 2000 international symposium. New York, New York, USA: ACM Press, 2000. http://dx.doi.org/10.1145/345542.345581.
Texto completoMay, John P., B. David Saunders y David Harlan Wood. "Numerical techniques for computing the inertia of products of matrices of rational numbers". En ISSAC07: International Symposium on Symbolic and Algebraic Computation. New York, NY, USA: ACM, 2007. http://dx.doi.org/10.1145/1277500.1277520.
Texto completoDaghigh, Hassan, Somayeh Didari y Ruholla Khodakaramian Gilan. "A deterministic algorithm for discrete logarithm on some special elliptic curves over rational numbers". En 2015 12th International Iranian Society of Cryptology Conference on Information Security and Cryptology (ISCISC). IEEE, 2015. http://dx.doi.org/10.1109/iscisc.2015.7387912.
Texto completoPinto, Hélia. "THE GALLERY WALK AS A WAY TO TRAIN PRESERVICE TEACHERS FOR TEACHING RATIONAL NUMBERS". En 16th International Conference on Education and New Learning Technologies. IATED, 2024. http://dx.doi.org/10.21125/edulearn.2024.1370.
Texto completoGe, Q. J. y Donglai Kang. "Rational Bézier and B-Spline Ruled Surface Patches". En ASME 1996 Design Engineering Technical Conferences and Computers in Engineering Conference. American Society of Mechanical Engineers, 1996. http://dx.doi.org/10.1115/96-detc/dac-1495.
Texto completoPomrehn, Leonard P. y Panos Y. Papalambros. "Optimal Approximation of Real Values Using Rational Numbers With Application to the Kinematic Design of Gearboxes". En ASME 1993 Design Technical Conferences. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/detc1993-0384.
Texto completoAliyev, Yagub N. "The 3x+1 Problem For Rational Numbers : Invariance of Periodic Sequences in 3x+1 Problem". En 2020 IEEE 14th International Conference on Application of Information and Communication Technologies (AICT). IEEE, 2020. http://dx.doi.org/10.1109/aict50176.2020.9368585.
Texto completoAnnathurai, K., Z. Zamzamir, S. Shafie, F. Rahmat, R. Masri y N. Hasan. "Development of InterFrac Matching Kit integrates game-based learning in the form 1 rational numbers topic". En INTERNATIONAL CONFERENCE ON INNOVATION IN MECHANICAL AND CIVIL ENGINEERING (i-MACE 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0149564.
Texto completoInformes sobre el tema "Numbers, Rational"
Lu, Chao. A Computational Library Using P-adic Arithmetic for Exact Computation With Rational Numbers in Quantum Computing. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2005. http://dx.doi.org/10.21236/ada456488.
Texto completoLutz, Carsten. Adding Numbers to the SHIQ Description Logic - First Results. Aachen University of Technology, 2001. http://dx.doi.org/10.25368/2022.117.
Texto completoGonzales, Lorenzo. Ir-Rational Number Institute Report 2017-2018. Office of Scientific and Technical Information (OSTI), junio de 2018. http://dx.doi.org/10.2172/1440467.
Texto completoRosenfeld. L51741 Development of a Model for Fatigue Rating Shallow Unrestrained Dents. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), septiembre de 1997. http://dx.doi.org/10.55274/r0010337.
Texto completoADA JOINT PROGRAM OFFICE ARLINGTON VA. Ada (Tradename) Compiler Validation Summary Report: Certificate Number: 880815W1.09143 Rational VAX-VMS, Version 2.0.45 Rational R1000 Series 200 Model 20 and VAX-11/750 (Host) and (Target). Fort Belvoir, VA: Defense Technical Information Center, agosto de 1988. http://dx.doi.org/10.21236/ada205908.
Texto completoKaiser, Frederick M. Interagency Collaborative Arrangements and Activities: Types, Rationales, Considerations (Interagency Paper, Number 5, June 2011). Fort Belvoir, VA: Defense Technical Information Center, junio de 2011. http://dx.doi.org/10.21236/ada551190.
Texto completoXiong, Wei. Rational Optimization of Microbial Processing for High Yield CO2-to-Isopropanol Conversion: Cooperative Research and Development Final Report, CRADA Number CRD-20-17114. Office of Scientific and Technical Information (OSTI), enero de 2024. http://dx.doi.org/10.2172/2283521.
Texto completoMunoz, Laura, Giulia Mascagni, Wilson Prichard y Fabrizio Santoro. Should Governments Tax Digital Financial Services? A Research Agenda to Understand Sector-Specific Taxes on DFS. Institute of Development Studies (IDS), febrero de 2022. http://dx.doi.org/10.19088/ictd.2022.002.
Texto completoVISTA RESEARCH CORP TUCSON AZ. Ada Compiler Validation Summary Report: Certificate Number: 940630W1. 11369 Rational Software Corporation VADS Sun4 => PowerPC, Product Number 2100- 01444, Version 6.2 Sun 4 Model SPARCcenter 2000 under Solaris 2.3 => Motorola MVME160 (PowerPC 601 Bare Machine). Fort Belvoir, VA: Defense Technical Information Center, julio de 1994. http://dx.doi.org/10.21236/ada285107.
Texto completoEmmerson, Stephen. Modulations through time. Norges Musikkhøgskole, agosto de 2018. http://dx.doi.org/10.22501/nmh-ar.530427.
Texto completo