Artículos de revistas sobre el tema "Nuclear fuel pellet"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Nuclear fuel pellet".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Dooley, Patricia, Dakota Contryman, Addie Hervey, Robert Ivers, Isabella Reddish y Yuze Song. "Design of an optimized nuclear fuel pellet". Nuclear Science and Technology Open Research 2 (9 de enero de 2024): 1. http://dx.doi.org/10.12688/nuclscitechnolopenres.17443.1.
Texto completoHeikinheimo, Janne, Teemu Kärkelä, Václav Tyrpekl, Matĕj̆ Niz̆n̆anský, Mélany Gouëllo y Unto Tapper. "Iodine release from high-burnup fuel structures: Separate-effect tests and simulated fuel pellets for better understanding of iodine behaviour in nuclear fuels". MRS Advances 6, n.º 47-48 (diciembre de 2021): 1026–31. http://dx.doi.org/10.1557/s43580-021-00175-1.
Texto completoMirsalimov, Vagif. "Crack nucleation in rod-type nuclear fuel pellet". Mathematics and Mechanics of Solids 24, n.º 3 (1 de febrero de 2018): 668–85. http://dx.doi.org/10.1177/1081286517753977.
Texto completoBeloborodov, Alexey V., Evgeny V. Vlasov, Leonid V. Finogenov y Peter S. Zav’yalov. "High Productive Optoelectronic Pellets Surface Inspection for Nuclear Reactors". Key Engineering Materials 437 (mayo de 2010): 165–69. http://dx.doi.org/10.4028/www.scientific.net/kem.437.165.
Texto completoJoseph, Odii Christopher, Agyekum Ephraim Bonah y Bright Kwame Afornu. "Effect of Dual Surface Cooling on the Temperature Distribution of a Nuclear Fuel Pellet". Key Engineering Materials 769 (abril de 2018): 296–310. http://dx.doi.org/10.4028/www.scientific.net/kem.769.296.
Texto completoHalabuk, Dávid y Jiří Martinec. "CALCULATION OF STRESS AND DEFORMATION IN FUEL ROD CLADDING DURING PELLET-CLADDING INTERACTION". Acta Polytechnica 55, n.º 6 (31 de diciembre de 2015): 384. http://dx.doi.org/10.14311/ap.2015.55.0384.
Texto completoNguyen, Van Tung, Trong Hung Nguyen, Thanh Thuy Nguyen y Duy Minh Cao. "Predicting behavior of AP-1000 nuclear reactor fuel rod under steady state operating condition by using FRAPCON-4.0 software". Nuclear Science and Technology 8, n.º 2 (1 de septiembre de 2021): 43–50. http://dx.doi.org/10.53747/jnst.v8i2.90.
Texto completoKim, Seyeon y Sanghoon Lee. "Simplified Model of a High Burnup Spent Nuclear Fuel Rod under Lateral Impact Considering a Stress-Based Failure Criterion". Metals 11, n.º 10 (14 de octubre de 2021): 1631. http://dx.doi.org/10.3390/met11101631.
Texto completoMarchetti, Mara, Michel Herm, Tobias König, Simone Manenti y Volker Metz. "Actinides induced irradiation damage and swelling effect in irradiated Zircaloy-4 after 30 years of storage". Safety of Nuclear Waste Disposal 1 (10 de noviembre de 2021): 7–8. http://dx.doi.org/10.5194/sand-1-7-2021.
Texto completoKeyvan, Shahla, Xiaolong Song y Mark Kelly. "Nuclear fuel pellet inspection using artificial neural networks". Journal of Nuclear Materials 264, n.º 1-2 (enero de 1999): 141–54. http://dx.doi.org/10.1016/s0022-3115(98)00464-4.
Texto completoKWON, Y. D., S. B. KWON, K. T. RHO, M. S. KIM y H. J. SONG. "THERMO-ELASTIC-PLASTIC-CREEP FINITE ELEMENT ANALYSES OF ANNULAR NUCLEAR FUELS". International Journal of Modern Physics: Conference Series 06 (enero de 2012): 379–84. http://dx.doi.org/10.1142/s2010194512003479.
Texto completoSampaio Ribeiro, Luciana, Francisco Javier Rios y Armindo Santos. "Porous Stainless Steel Microsphere Synthesis by a Nonconventional Powder Metallurgy Process Useful in the Cermet-Type Advanced Nuclear Fuel Fabrication". Journal of Nanomaterials 2023 (29 de abril de 2023): 1–22. http://dx.doi.org/10.1155/2023/3555763.
Texto completoKim, Young-Hwan, Yung-Zun Cho y Jin-Mok Hur. "Experimental Approaches for Manufacturing of Simulated Cladding and Simulated Fuel Rod for Mechanical Decladder". Science and Technology of Nuclear Installations 2020 (24 de enero de 2020): 1–12. http://dx.doi.org/10.1155/2020/1905019.
Texto completoVlasov, E. V., A. V. Beloborodov, P. S. Zav'yalov y D. G. Syretskiy. "Control of the appearance of fuel pellets ends surfaces in a conveyor production". Дефектоскопия, n.º 7 (15 de julio de 2023): 33–43. http://dx.doi.org/10.31857/s0130308223070047.
Texto completoCantini, Federico, Martina Adorni y Francesco D’Auria. "Nuclear Fuel Modelling During Power Ramp". Journal of Energy - Energija 62, n.º 1-4 (18 de julio de 2022): 68–80. http://dx.doi.org/10.37798/2013621-4219.
Texto completoReigel, M., C. Donohoue, Douglas Burkes, John J. Moore y J. R. Kennedy. "Application of Combustion Synthesis to the Production of Actinide Bearing Nitride Ceramic Nuclear Fuels". Materials Science Forum 561-565 (octubre de 2007): 1749–52. http://dx.doi.org/10.4028/www.scientific.net/msf.561-565.1749.
Texto completoFerry, C., J. Radwan y H. Palancher. "Review about the Effect of He on the Microstructure of Spent Nuclear Fuel in a Repository". MRS Advances 1, n.º 62 (2016): 4147–56. http://dx.doi.org/10.1557/adv.2017.202.
Texto completoChernov, Igor, Аnton Kushtym, Volodymyr Tatarinov y Dmytro Kutniy. "Manufacturing Features and Characteristics of Uranium Dioxide Pellets for Subcritical Assembly Fuel Rods". 3, n.º 3 (2 de septiembre de 2022): 59–66. http://dx.doi.org/10.26565/2312-4334-2022-3-08.
Texto completoDemarco, Gustavo L. y Armando C. Marino. "3D Finite Elements Modelling for Design and Performance Analysis of Pellets". Science and Technology of Nuclear Installations 2011 (2011): 1–10. http://dx.doi.org/10.1155/2011/843491.
Texto completoForsberg, K., L. O. Jernkvist y A. R. Massih. "Modeling oxygen redistribution in UO2+ fuel pellet". Journal of Nuclear Materials 528 (enero de 2020): 151829. http://dx.doi.org/10.1016/j.jnucmat.2019.151829.
Texto completoKusumoputro, Benyamin, Rozandi Prarizky, Wahidin Wahab, Dede Sutarya y Li Na. "Assesment of Quality Classification of Green Pellets for Nuclear Power Plants Using Improved Levenberg-Marquardt Algorithm". Advanced Materials Research 608-609 (diciembre de 2012): 825–34. http://dx.doi.org/10.4028/www.scientific.net/amr.608-609.825.
Texto completoKusumoputro, Benyamin, Dede Sutarya y Li Na. "Nuclear Power Plant Fuel’s Quality Classification Using Ensemble Back Propagation Neural Networks". Advanced Materials Research 685 (abril de 2013): 367–71. http://dx.doi.org/10.4028/www.scientific.net/amr.685.367.
Texto completoBelov, Alexander I., Randy W. L. Fong, Brian W. Leitch, Thambiayah Nitheanandan y Anthony Williams. "CHARACTERIZING HIGH-TEMPERATURE DEFORMATION OF INTERNALLY HEATED NUCLEAR FUEL ELEMENT SIMULATORS". CNL Nuclear Review 5, n.º 1 (junio de 2016): 67–84. http://dx.doi.org/10.12943/cnr.2016.00005.
Texto completoEidelpes, Elmar, Luis Francisco Ibarra y Ricardo Antonio Medina. "Ring compression tests on un-irradiated nuclear fuel rod cladding considering fuel pellet support". Journal of Nuclear Materials 510 (noviembre de 2018): 446–59. http://dx.doi.org/10.1016/j.jnucmat.2018.08.009.
Texto completoCherezov, Alexey, Jinsu Park, Hanjoo Kim, Jiwon Choe y Deokjung Lee. "A Multi-Physics Adaptive Time Step Coupling Algorithm for Light-Water Reactor Core Transient and Accident Simulation". Energies 13, n.º 23 (2 de diciembre de 2020): 6374. http://dx.doi.org/10.3390/en13236374.
Texto completoMori, Y., K. Ishii, R. Hanayama, S. Okihara, Y. Kitagawa, Y. Nishimura, O. Komeda et al. "Ten hertz bead pellet injection and laser engagement". Nuclear Fusion 62, n.º 3 (3 de febrero de 2022): 036028. http://dx.doi.org/10.1088/1741-4326/ac3d69.
Texto completoCenteno-Pérez, J., C. G. Aguilar-Madera, G. Espinosa-Paredes, E. C. Herrera-Hernández y A. D. Pérez-Valseca. "Upscaled elasticity modulus for nuclear fuel pellet (UO2) with porosity effects". Journal of Nuclear Materials 568 (septiembre de 2022): 153875. http://dx.doi.org/10.1016/j.jnucmat.2022.153875.
Texto completoTsibulskiy, S. "COMPARISON OF HOMOGENEOUS AND HETEROGENEOUS USE OF ENERGY PLUTONIUM IN VVER". PROBLEMS OF ATOMIC SCIENCE AND TECHNOLOGY. SERIES: NUCLEAR AND REACTOR CONSTANTS 2019, n.º 2 (26 de junio de 2019): 64–67. http://dx.doi.org/10.55176/2414-1038-2019-2-64-67.
Texto completoMAHDAVI, M. y B. JALALY. "EFFECTS OF DEUTERIUM–LITHIUM FUSION REACTION ON INTERNAL TRITIUM BREEDING". International Journal of Modern Physics E 19, n.º 11 (noviembre de 2010): 2123–32. http://dx.doi.org/10.1142/s0218301310016545.
Texto completoWang, Qibiao, Yushi Luo, Yong Sun, Yang Wu, Bin Tang, Shuming Peng y Xianguo Tuo. "Weak-Edge Extraction of Nuclear Plate Fuel Neutron Images at Low Lining Degree". Applied Sciences 13, n.º 8 (19 de abril de 2023): 5090. http://dx.doi.org/10.3390/app13085090.
Texto completoKuzmin, Ilya V., Anton Yu Leshchenko, Sergey V. Pavlov, Rinat N. Shamsutdinov y Yuriy S. Mochalov. "Test bench for gas-dynamic studies in the furnace channel for nuclear fuel pellet sintering *". Nuclear Energy and Technology 5, n.º 2 (21 de junio de 2019): 171–75. http://dx.doi.org/10.3897/nucet.5.36479.
Texto completoLee, Sanghoon y Seyeon Kim. "Development of Equivalent Beam Model of High Burnup Spent Nuclear Fuel Rods under Lateral Impact Loading". Metals 10, n.º 4 (3 de abril de 2020): 470. http://dx.doi.org/10.3390/met10040470.
Texto completoKim, Ki Hwan, Jong Man Park, Don Bae Lee, Chul Goo Chi y Chang Kyu Kim. "Fabrication of Monolithic UAl2 Pellet for High-Density Nuclear Fuel". Advanced Materials Research 26-28 (octubre de 2007): 925–28. http://dx.doi.org/10.4028/www.scientific.net/amr.26-28.925.
Texto completoYusibani, Elin, Fitria Helmiza, Fashbir Fashbir y Sidik Permana. "Simulation on the Effect of Coolant Inlet Temperature and Mass-Flowrate Variations to the Temperature Distribution in Single Pellet Thermal Reactor Core". Jurnal Penelitian Fisika dan Aplikasinya (JPFA) 11, n.º 1 (23 de julio de 2021): 63–71. http://dx.doi.org/10.26740/jpfa.v11n1.p63-71.
Texto completoFidalgo, Alexandre Barreiro, Olivia Roth, Anders Puranen, Lena Z. Evins y Kastriot Spahiu. "Aqueous leaching of ADOPT and standard UO2 spent nuclear fuel under H2 atmosphere". MRS Advances 5, n.º 3-4 (2020): 167–75. http://dx.doi.org/10.1557/adv.2020.69.
Texto completoSi, Shengyi. "Multiphysics Model Development and the Core Analysis for In Situ Breeding and Burning Reactor". Science and Technology of Nuclear Installations 2013 (2013): 1–14. http://dx.doi.org/10.1155/2013/154706.
Texto completoSTANKUNAS, GEDIMINAS. "FRACTAL MODEL OF FISSION PRODUCT RELEASE IN NUCLEAR FUEL". International Journal of Modern Physics C 23, n.º 09 (septiembre de 2012): 1250057. http://dx.doi.org/10.1142/s012918311250057x.
Texto completoYANAGISAWA, Kazuaki y Harald DEVOLD. "Pellet-cladding interaction on light water reactor fuel. (II) BWR type fuel rod." Journal of the Atomic Energy Society of Japan / Atomic Energy Society of Japan 28, n.º 8 (1986): 771–82. http://dx.doi.org/10.3327/jaesj.28.771.
Texto completoYANAGISAWA, Kazuaki, Yoshiaki KONDO y Erik KOLSTAD. "Pellet-cladding interaction on light water reactor fuel, (I)". Journal of the Atomic Energy Society of Japan / Atomic Energy Society of Japan 28, n.º 7 (1986): 641–57. http://dx.doi.org/10.3327/jaesj.28.641.
Texto completoMarchal, N., C. Campos y C. Garnier. "Finite element simulation of Pellet-Cladding Interaction (PCI) in nuclear fuel rods". Computational Materials Science 45, n.º 3 (mayo de 2009): 821–26. http://dx.doi.org/10.1016/j.commatsci.2008.10.015.
Texto completoLin, Wei Keng, Jong Rong Wang, Yung Shin Tseng y Jui En Chang. "Using CFD Couple with Visual Basic to Investigate the Thermal Behavior for Fuel Rod Bowing Problem". Advanced Materials Research 651 (enero de 2013): 688–93. http://dx.doi.org/10.4028/www.scientific.net/amr.651.688.
Texto completoCordara, Theo, Hannah Smith, Ritesh Mohun, Laura J. Gardner, Martin C. Stennett, Neil C. Hyatt y Claire L. Corkhill. "Hot Isostatic Pressing (HIP): A novel method to prepare Cr-doped UO2 nuclear fuel". MRS Advances 5, n.º 1-2 (2020): 45–53. http://dx.doi.org/10.1557/adv.2020.62.
Texto completoFrancon, Virginie, Marion Fregonese, Hiroshi Abe y Yutaka Watanabe. "Iodine-Induced Stress Corrosion Cracking of Zircaloy-4: Identification of Critical Parameters Involved in Intergranular to Transgranular Crack Propagation". Solid State Phenomena 183 (diciembre de 2011): 49–56. http://dx.doi.org/10.4028/www.scientific.net/ssp.183.49.
Texto completoJohnston, Craig M. T. y G. Cornelis van Kooten. "Economic consequences of increased bioenergy demand". Forestry Chronicle 90, n.º 05 (octubre de 2014): 636–42. http://dx.doi.org/10.5558/tfc2014-128.
Texto completoNakamura, H., T. Kubo, T. Karino, H. Kato y S. Kawata. "Fuel pellet injection into heavy-ion inertial fusion reactor". High Energy Density Physics 35 (junio de 2020): 100741. http://dx.doi.org/10.1016/j.hedp.2019.100741.
Texto completoPauzi, Anas Muhamad, Hector Iacovides y Andrea Cioncolini. "Pragmatic modelling of axial flow-induced vibration (FIV) for nuclear fuel rods". IOP Conference Series: Materials Science and Engineering 1285, n.º 1 (1 de julio de 2023): 012001. http://dx.doi.org/10.1088/1757-899x/1285/1/012001.
Texto completoKim, Dong-Joo, Keon Sik Kim, Dong Seok Kim, Jang Soo Oh, Jong Hun Kim, Jae Ho Yang y Yang-Hyun Koo. "Development status of microcell UO2 pellet for accident-tolerant fuel". Nuclear Engineering and Technology 50, n.º 2 (marzo de 2018): 253–58. http://dx.doi.org/10.1016/j.net.2017.12.008.
Texto completoKonashi, Kenji y Michio Yamawaki. "Utilization of Hydride Materials in Nuclear Reactors". Advances in Science and Technology 73 (octubre de 2010): 51–58. http://dx.doi.org/10.4028/www.scientific.net/ast.73.51.
Texto completoKeyvan, Shahla, Mark L. Kelly y Xiaolong Song. "Feature Extraction for Artificial Neural Network Application to Fabricated Nuclear Fuel Pellet INSPECTION". Nuclear Technology 119, n.º 3 (septiembre de 1997): 269–75. http://dx.doi.org/10.13182/nt97-a35402.
Texto completoZhang, Bin, Mengmeng Liu, Yongzhi Tian, Ge Wu, Xiaohui Yang, Songyang Shi y Jianning Li. "Defect inspection system of nuclear fuel pellet end faces based on machine vision". Journal of Nuclear Science and Technology 57, n.º 6 (2 de enero de 2020): 617–23. http://dx.doi.org/10.1080/00223131.2019.1708827.
Texto completo