Artículos de revistas sobre el tema ""nor tomato mutant""
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema ""nor tomato mutant"".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
McGlasson, W. B., J. H. Last, K. J. Shaw y S. K. Meldrum. "Influence of the Non-ripening Mutants rin and nor on the Aroma of Tomato Fruit". HortScience 22, n.º 4 (agosto de 1987): 632–34. http://dx.doi.org/10.21273/hortsci.22.4.632.
Texto completoGao, Ying, Wei Wei, Zhongqi Fan, Xiaodan Zhao, Yiping Zhang, Yuan Jing, Benzhong Zhu et al. "Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening". Journal of Experimental Botany 71, n.º 12 (27 de abril de 2020): 3560–74. http://dx.doi.org/10.1093/jxb/eraa131.
Texto completoBaldwin, E. A. y R. Pressey. "Tomato Polygalacturonase Elicits Ethylene Production in Tomato Fruit". Journal of the American Society for Horticultural Science 113, n.º 1 (enero de 1988): 92–95. http://dx.doi.org/10.21273/jashs.113.1.92.
Texto completoKaup, Olaf, Ines Gräfen, Eva-Maria Zellermann, Rudolf Eichenlaub y Karl-Heinz Gartemann. "Identification of a Tomatinase in the Tomato-Pathogenic Actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382". Molecular Plant-Microbe Interactions® 18, n.º 10 (octubre de 2005): 1090–98. http://dx.doi.org/10.1094/mpmi-18-1090.
Texto completoGiovannoni, Jim. "659 Genetic Control of Fruit Quality and Prospects for Nutrient Modification". HortScience 35, n.º 3 (junio de 2000): 512A—512. http://dx.doi.org/10.21273/hortsci.35.3.512a.
Texto completoPoma, Betsabé Antezana, Wilson Roberto Maluf, Beatriz Tome Gouveia, Alisson Marcel Souza de Oliveira, Rodolfo de Paula Duarte Ferreira y Regis de Castro Carvalho. "Fruit color and post-harvest shelf life in tomato affected by the ogc, nor A, and rin alleles". Pesquisa Agropecuária Brasileira 52, n.º 9 (septiembre de 2017): 743–50. http://dx.doi.org/10.1590/s0100-204x2017000900006.
Texto completoCvikic, Dejan, Jasmina Zdravkovic, Nenad Pavlovic, Sladjan Adzic y Mladen Djordjevic. "Postharvest shelf life of tomato (Lycopersicon esculentum Mill.) mutanats (nor and rin) and their hybrids". Genetika 44, n.º 3 (2012): 449–56. http://dx.doi.org/10.2298/gensr1203449c.
Texto completoWilson, M., H. L. Campbell, P. Ji, J. B. Jones y D. A. Cuppels. "Biological Control of Bacterial Speck of Tomato Under Field Conditions at Several Locations in North America". Phytopathology® 92, n.º 12 (diciembre de 2002): 1284–92. http://dx.doi.org/10.1094/phyto.2002.92.12.1284.
Texto completoBhattarai, Kishor K., Qi-Guang Xie, Sophie Mantelin, Usha Bishnoi, Thomas Girke, Duroy A. Navarre y Isgouhi Kaloshian. "Tomato Susceptibility to Root-Knot Nematodes Requires an Intact Jasmonic Acid Signaling Pathway". Molecular Plant-Microbe Interactions® 21, n.º 9 (septiembre de 2008): 1205–14. http://dx.doi.org/10.1094/mpmi-21-9-1205.
Texto completoXie, Qiaoli, Yanling Tian, Zongli Hu, Lincheng Zhang, Boyan Tang, Yunshu Wang, Jing Li y Guoping Chen. "Novel Translational and Phosphorylation Modification Regulation Mechanisms of Tomato (Solanum lycopersicum) Fruit Ripening Revealed by Integrative Proteomics and Phosphoproteomics". International Journal of Molecular Sciences 22, n.º 21 (29 de octubre de 2021): 11782. http://dx.doi.org/10.3390/ijms222111782.
Texto completoSiller-Cepeda, J., C. Peiro, M. Bez, M. Muy, E. Araiza, R. Garcia y R. Bez. "Fruit Ripening and Quality of Experimental and Commercial (rin and nor) Tomato Hybrid Lines". HortScience 31, n.º 4 (agosto de 1996): 688a—688. http://dx.doi.org/10.21273/hortsci.31.4.688a.
Texto completoAutio, Wesley R. y William J. Bramlage. "Chilling Sensitivity of Tomato Fruit in Relation to Ripening and Senescence". Journal of the American Society for Horticultural Science 111, n.º 2 (marzo de 1986): 201–4. http://dx.doi.org/10.21273/jashs.111.2.201.
Texto completoKnoester, Marga, Corné M. J. Pieterse, John F. Bol y Leendert C. Van Loon. "Systemic Resistance in Arabidopsis Induced by Rhizobacteria Requires Ethylene-Dependent Signaling at the Site of Application". Molecular Plant-Microbe Interactions® 12, n.º 8 (agosto de 1999): 720–27. http://dx.doi.org/10.1094/mpmi.1999.12.8.720.
Texto completoTERAI, Hirofumi. "Regulation Mechanism of Ethylene Production in Normal ^|^prime;Rutgers^|^prime;, and Mutant nor and rin Tomato Fruits". Journal of the Japanese Society for Horticultural Science 59, n.º 1 (1990): 121–28. http://dx.doi.org/10.2503/jjshs.59.121.
Texto completoFujimoto, Taketo, Takayuki Mizukubo, Hiroshi Abe y Shigemi Seo. "Sclareol Induces Plant Resistance to Root-Knot Nematode Partially Through Ethylene-Dependent Enhancement of Lignin Accumulation". Molecular Plant-Microbe Interactions® 28, n.º 4 (abril de 2015): 398–407. http://dx.doi.org/10.1094/mpmi-10-14-0320-r.
Texto completoDavies, Kevin, Donald Grierson, Rachel Edwards y Graeme Hobson. "Salt-stress Induces Partial Ripening of the nor Tomato Mutant but Expression of only some Ripening-Related Genes". Journal of Plant Physiology 139, n.º 2 (diciembre de 1991): 140–45. http://dx.doi.org/10.1016/s0176-1617(11)80598-5.
Texto completoGolan, Rivka Barkai. "Detection of Polygalacturonase Enzymes in Fruits of Both a Normal Tomato and its Nonripening Nor Mutant Infected with Rhizopus stolonifer". Phytopathology 76, n.º 1 (1986): 42. http://dx.doi.org/10.1094/phyto-76-42.
Texto completoCharkowski, Amy O., James R. Alfano, Gail Preston, Jing Yuan, Sheng Yang He y Alan Collmer. "The Pseudomonas syringae pv. tomato HrpW Protein Has Domains Similar to Harpins and Pectate Lyases and Can Elicit the Plant Hypersensitive Response and Bind to Pectate". Journal of Bacteriology 180, n.º 19 (1 de octubre de 1998): 5211–17. http://dx.doi.org/10.1128/jb.180.19.5211-5217.1998.
Texto completoTerai, Hirofumi. "Behaviors of 1-Aminocyclopropane-1-carboxylic Acid(ACC) and ACC Synthase Responsible for Ethylene Production in Normal and Mutant(nor and rin) Tomato Fruits at Various Ripening Stages." Engei Gakkai zasshi 61, n.º 4 (1993): 805–12. http://dx.doi.org/10.2503/jjshs.61.805.
Texto completoChin-A-Woeng, Thomas F. C., Daan van den Broek, Gert de Voer, Koen M. G. M. van der Drift, Sietske Tuinman, Jane E. Thomas-Oates, Ben J. J. Lugtenberg y Guido V. Bloemberg. "Phenazine-1-Carboxamide Production in the Biocontrol Strain Pseudomonas chlororaphis PCL1391 Is Regulated by Multiple Factors Secreted into the Growth Medium". Molecular Plant-Microbe Interactions® 14, n.º 8 (agosto de 2001): 969–79. http://dx.doi.org/10.1094/mpmi.2001.14.8.969.
Texto completoZhang, Chu, Kirk J. Czymmek y Allan D. Shapiro. "Nitric oxide Does Not Trigger Early Programmed Cell Death Events but May Contribute to Cell-to-Cell Signaling Governing Progression of the Arabidopsis Hypersensitive Response". Molecular Plant-Microbe Interactions® 16, n.º 11 (noviembre de 2003): 962–72. http://dx.doi.org/10.1094/mpmi.2003.16.11.962.
Texto completoLee, Lan-Ying, Stanton B. Gelvin y Clarence I. Kado. "pSa Causes Oncogenic Suppression ofAgrobacterium by Inhibiting VirE2 Protein Export". Journal of Bacteriology 181, n.º 1 (1 de enero de 1999): 186–96. http://dx.doi.org/10.1128/jb.181.1.186-196.1999.
Texto completoXu, Ping, Hua Wang, Frank Coker, Jun-ying Ma, Yuhong Tang, Mark Taylor y Marilyn J. Roossinck. "Genetic Loci Controlling Lethal Cell Death in Tomato Caused by Viral Satellite RNA Infection". Molecular Plant-Microbe Interactions® 25, n.º 8 (agosto de 2012): 1034–44. http://dx.doi.org/10.1094/mpmi-01-12-0004.
Texto completoXiao, Chunlin y Mosbah M. Kushad. "Reduced 5'-Methylthioadenosine Nucleosidase and 5-Methylthioribose Activities and Ethylene Biosynthesis in Nonripening Tomato Mutants `Rin' and `Nor' Relative to Ripening Tomato `Rutgers'". HortScience 31, n.º 4 (agosto de 1996): 687f—688. http://dx.doi.org/10.21273/hortsci.31.4.687f.
Texto completoSimons, Marco, Hjalmar P. Permentier, Letty A. de Weger, Carel A. Wijffelman y Ben J. J. Lugtenberg. "Amino Acid Synthesis Is Necessary for Tomato Root Colonization by Pseudomonas fluorescens Strain WCS365". Molecular Plant-Microbe Interactions® 10, n.º 1 (enero de 1997): 102–6. http://dx.doi.org/10.1094/mpmi.1997.10.1.102.
Texto completoGiannakopoulou, Artemis, John F. C. Steele, Maria Eugenia Segretin, Tolga O. Bozkurt, Ji Zhou, Silke Robatzek, Mark J. Banfield, Marina Pais y Sophien Kamoun. "Tomato I2 Immune Receptor Can Be Engineered to Confer Partial Resistance to the Oomycete Phytophthora infestans in Addition to the Fungus Fusarium oxysporum". Molecular Plant-Microbe Interactions® 28, n.º 12 (diciembre de 2015): 1316–29. http://dx.doi.org/10.1094/mpmi-07-15-0147-r.
Texto completoRushing, James W. y Donald J. Huber. "Initiation of Tomato Fruit Ripening with Copper". Journal of the American Society for Horticultural Science 110, n.º 3 (mayo de 1985): 316–18. http://dx.doi.org/10.21273/jashs.110.3.316.
Texto completoMüller, Gabriela L., Agustina Triassi, Clarisa E. Alvarez, María L. Falcone Ferreyra, Carlos S. Andreo, María V. Lara y María F. Drincovich. "Circadian oscillation and development-dependent expression of glycine-rich RNA binding proteins in tomato fruits". Functional Plant Biology 41, n.º 4 (2014): 411. http://dx.doi.org/10.1071/fp13239.
Texto completoWang, Shune, Ying Zheng, Chun Gu, Chan He, Mengying Yang, Xin Zhang, Jianhua Guo, Hongwei Zhao y Dongdong Niu. "Bacillus cereus AR156 Activates Defense Responses to Pseudomonas syringae pv. tomato in Arabidopsis thaliana Similarly to flg22". Molecular Plant-Microbe Interactions® 31, n.º 3 (marzo de 2018): 311–22. http://dx.doi.org/10.1094/mpmi-10-17-0240-r.
Texto completoIgnatova, S. I., O. G. Babak y S. F. Bagirova. "Development of high-lycopene tomato hybrids using conventional breeding techniques and molecular markers". Vegetable crops of Russia, n.º 5 (30 de octubre de 2020): 22–28. http://dx.doi.org/10.18619/2072-9146-2020-5-22-28.
Texto completoMayda, Esther, Carmen Marqués, Vicente Conejero y Pablo Vera. "Expression of a Pathogen-Induced Gene Can Be Mimicked by Auxin Insensitivity". Molecular Plant-Microbe Interactions® 13, n.º 1 (enero de 2000): 23–31. http://dx.doi.org/10.1094/mpmi.2000.13.1.23.
Texto completoOsorio, Sonia, Rob Alba, Cynthia M. B. Damasceno, Gloria Lopez-Casado, Marc Lohse, Maria Inés Zanor, Takayuki Tohge et al. "Systems Biology of Tomato Fruit Development: Combined Transcript, Protein, and Metabolite Analysis of Tomato Transcription Factor (nor, rin) and Ethylene Receptor (Nr) Mutants Reveals Novel Regulatory Interactions". Plant Physiology 157, n.º 1 (27 de julio de 2011): 405–25. http://dx.doi.org/10.1104/pp.111.175463.
Texto completoAtta-Aly, Mordy A., Mikal E. Saltveit y Adel S. El-Beltagy. "Saline growing conditions induce ripening of the non-ripening mutants nor and rin tomato fruits but not of Nr fruit". Postharvest Biology and Technology 13, n.º 3 (junio de 1998): 225–34. http://dx.doi.org/10.1016/s0925-5214(98)00010-6.
Texto completoChungui, L., X. Helin, Y. Rongchang y Y. Wengui. "PHYSIOLOGICAL AND BIOCHEMICAL CHARACTERS OF THE ALC, NOR AND RIN PIPENING MUTANTS IN TOMATO AND APPLICATION IN BREEDING FOR STORAGE PROPERTY". Acta Horticulturae, n.º 402 (julio de 1995): 141–50. http://dx.doi.org/10.17660/actahortic.1995.402.24.
Texto completoCorey, K. A., A. V. Barker y L. E. Craker. "Ethylene Evolution by Tomato Plants Under Stress of Ammonium Toxicity". HortScience 22, n.º 3 (junio de 1987): 471–73. http://dx.doi.org/10.21273/hortsci.22.3.471.
Texto completoAtta-Aly, Mordy A. y Adel S. El-Beltagy. "Effect of the cationic chelator EDTA on the ripening of normal tomato fruit and the non-ripening mutants nor, rin and Nr". Postharvest Biology and Technology 1, n.º 4 (mayo de 1992): 283–93. http://dx.doi.org/10.1016/0925-5214(92)90031-j.
Texto completoCzapski, Janusz y Marian Saniewski. "Stimulation of Ethylene Production and Ethylene-Forming Enzyme Activity in Fruits of the Non-Ripening nor and rin Tomato Mutants by Methyl Jasmonate". Journal of Plant Physiology 139, n.º 3 (enero de 1992): 265–68. http://dx.doi.org/10.1016/s0176-1617(11)80334-2.
Texto completoKong, Yiming, Zhe Meng, Hongfeng Wang, Yan Wang, Yuxue Zhang, Limei Hong, Rui Liu et al. "Brassinosteroid homeostasis is critical for the functionality of the Medicago truncatula pulvinus". Plant Physiology 185, n.º 4 (26 de enero de 2021): 1745–63. http://dx.doi.org/10.1093/plphys/kiab008.
Texto completoDong, Xiangli, Rene van Wezel, John Stanley y Yiguo Hong. "Functional Characterization of the Nuclear Localization Signal for a Suppressor of Posttranscriptional Gene Silencing". Journal of Virology 77, n.º 12 (15 de junio de 2003): 7026–33. http://dx.doi.org/10.1128/jvi.77.12.7026-7033.2003.
Texto completoShanaj Parvin, Most y Md Ehsanul Haque. "Microrna Regulation of Nodule Zone-Specific Gene Expression In Soybean". Journal of Natural Products and Natural Products Synthesis 1, n.º 1 (25 de junio de 2021): 15–21. http://dx.doi.org/10.55124/jnns.v1i1.82.
Texto completoAdaskaveg, Jaclyn A., Christian J. Silva, Peng Huang y Barbara Blanco-Ulate. "Single and Double Mutations in Tomato Ripening Transcription Factors Have Distinct Effects on Fruit Development and Quality Traits". Frontiers in Plant Science 12 (27 de abril de 2021). http://dx.doi.org/10.3389/fpls.2021.647035.
Texto completoHuang, Wei, Nan Hu, Zhina Xiao, Yuping Qiu, Yan Yang, Jie Yang, Xin Mao, Yichuan Wang, Zhengguo Li y Hongwei Guo. "A molecular framework of ethylene-mediated fruit growth and ripening processes in tomato". Plant Cell, 23 de mayo de 2022. http://dx.doi.org/10.1093/plcell/koac146.
Texto completoMigicovsky, Zoë, Trevor H. Yeats, Sophie Watts, Jun Song, Charles F. Forney, Karen Burgher-MacLellan, Daryl J. Somers et al. "Apple Ripening Is Controlled by a NAC Transcription Factor". Frontiers in Genetics 12 (22 de junio de 2021). http://dx.doi.org/10.3389/fgene.2021.671300.
Texto completoGiordano, Andrea, Miguel Santo Domingo, Leandro Quadrana, Marta Pujol, Ana Montserrat Martín-Hernández y Jordi Garcia-Mas. "CRISPR/Cas9 gene editing uncovers the role of CTR1 and ROS1 in melon fruit ripening and epigenetic regulation". Journal of Experimental Botany, 8 de abril de 2022. http://dx.doi.org/10.1093/jxb/erac148.
Texto completoYang, Guoqian, Chunli Zhang, Huaxi Dong, Xiaorui Liu, Huicong Guo, Boqin Tong, Fang Fang et al. "Activation and negative feedback regulation of SlHY5 transcription by the SlBBX20/21–SlHY5 transcription factor module in UV-B signaling". Plant Cell, 21 de febrero de 2022. http://dx.doi.org/10.1093/plcell/koac064.
Texto completoShtern, Amit, Alexandra Keren-Keiserman, Jean-Philippe Mauxion, Chihiro Furumizu, John Paul Alvarez, Ziva Amsellem, Naama Gil et al. "Solanum lycopersicum CLASS-II KNOX genes regulate fruit anatomy via gibberellin-dependent and independent pathways". Journal of Experimental Botany, 16 de noviembre de 2022. http://dx.doi.org/10.1093/jxb/erac454.
Texto completoDalsing, Beth L., Alicia N. Truchon, Enid T. Gonzalez-Orta, Annett S. Milling y Caitilyn Allen. "Ralstonia solanacearum Uses Inorganic Nitrogen Metabolism for Virulence, ATP Production, and Detoxification in the Oxygen-Limited Host Xylem Environment". mBio 6, n.º 2 (17 de marzo de 2015). http://dx.doi.org/10.1128/mbio.02471-14.
Texto completoD’Incà, Erica, Chiara Foresti, Luis Orduña, Alessandra Amato, Elodie Vandelle, Antonio Santiago, Alessandro Botton et al. "The transcription factor VviNAC60 regulates senescence- and ripening-related processes in grapevine". Plant Physiology, 30 de enero de 2023. http://dx.doi.org/10.1093/plphys/kiad050.
Texto completoZhao, Xiaohui, Zhengqiang Chen, Qian Wu, Yazhen Cai, Yu Zhang, Ruizhen Zhao, Jiaoling Yan et al. "The Sw-5b NLR nucleotide-binding domain plays a role in oligomerization, and its self-association is important for activation of cell death signaling". Journal of Experimental Botany, 11 de junio de 2021. http://dx.doi.org/10.1093/jxb/erab279.
Texto completoPizarro, Lorena, Meirav Leibman-Markus, Rupali Gupta, Neta Kovetz, Ilana Shtein, Einat Bar, Rachel Davidovich-Rikanati et al. "A gain of function mutation in SlNRC4a enhances basal immunity resulting in broad-spectrum disease resistance". Communications Biology 3, n.º 1 (30 de julio de 2020). http://dx.doi.org/10.1038/s42003-020-01130-w.
Texto completo