Literatura académica sobre el tema ""nor tomato mutant""
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema ""nor tomato mutant"".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema ""nor tomato mutant""
McGlasson, W. B., J. H. Last, K. J. Shaw y S. K. Meldrum. "Influence of the Non-ripening Mutants rin and nor on the Aroma of Tomato Fruit". HortScience 22, n.º 4 (agosto de 1987): 632–34. http://dx.doi.org/10.21273/hortsci.22.4.632.
Texto completoGao, Ying, Wei Wei, Zhongqi Fan, Xiaodan Zhao, Yiping Zhang, Yuan Jing, Benzhong Zhu et al. "Re-evaluation of the nor mutation and the role of the NAC-NOR transcription factor in tomato fruit ripening". Journal of Experimental Botany 71, n.º 12 (27 de abril de 2020): 3560–74. http://dx.doi.org/10.1093/jxb/eraa131.
Texto completoBaldwin, E. A. y R. Pressey. "Tomato Polygalacturonase Elicits Ethylene Production in Tomato Fruit". Journal of the American Society for Horticultural Science 113, n.º 1 (enero de 1988): 92–95. http://dx.doi.org/10.21273/jashs.113.1.92.
Texto completoKaup, Olaf, Ines Gräfen, Eva-Maria Zellermann, Rudolf Eichenlaub y Karl-Heinz Gartemann. "Identification of a Tomatinase in the Tomato-Pathogenic Actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382". Molecular Plant-Microbe Interactions® 18, n.º 10 (octubre de 2005): 1090–98. http://dx.doi.org/10.1094/mpmi-18-1090.
Texto completoGiovannoni, Jim. "659 Genetic Control of Fruit Quality and Prospects for Nutrient Modification". HortScience 35, n.º 3 (junio de 2000): 512A—512. http://dx.doi.org/10.21273/hortsci.35.3.512a.
Texto completoPoma, Betsabé Antezana, Wilson Roberto Maluf, Beatriz Tome Gouveia, Alisson Marcel Souza de Oliveira, Rodolfo de Paula Duarte Ferreira y Regis de Castro Carvalho. "Fruit color and post-harvest shelf life in tomato affected by the ogc, nor A, and rin alleles". Pesquisa Agropecuária Brasileira 52, n.º 9 (septiembre de 2017): 743–50. http://dx.doi.org/10.1590/s0100-204x2017000900006.
Texto completoCvikic, Dejan, Jasmina Zdravkovic, Nenad Pavlovic, Sladjan Adzic y Mladen Djordjevic. "Postharvest shelf life of tomato (Lycopersicon esculentum Mill.) mutanats (nor and rin) and their hybrids". Genetika 44, n.º 3 (2012): 449–56. http://dx.doi.org/10.2298/gensr1203449c.
Texto completoWilson, M., H. L. Campbell, P. Ji, J. B. Jones y D. A. Cuppels. "Biological Control of Bacterial Speck of Tomato Under Field Conditions at Several Locations in North America". Phytopathology® 92, n.º 12 (diciembre de 2002): 1284–92. http://dx.doi.org/10.1094/phyto.2002.92.12.1284.
Texto completoBhattarai, Kishor K., Qi-Guang Xie, Sophie Mantelin, Usha Bishnoi, Thomas Girke, Duroy A. Navarre y Isgouhi Kaloshian. "Tomato Susceptibility to Root-Knot Nematodes Requires an Intact Jasmonic Acid Signaling Pathway". Molecular Plant-Microbe Interactions® 21, n.º 9 (septiembre de 2008): 1205–14. http://dx.doi.org/10.1094/mpmi-21-9-1205.
Texto completoXie, Qiaoli, Yanling Tian, Zongli Hu, Lincheng Zhang, Boyan Tang, Yunshu Wang, Jing Li y Guoping Chen. "Novel Translational and Phosphorylation Modification Regulation Mechanisms of Tomato (Solanum lycopersicum) Fruit Ripening Revealed by Integrative Proteomics and Phosphoproteomics". International Journal of Molecular Sciences 22, n.º 21 (29 de octubre de 2021): 11782. http://dx.doi.org/10.3390/ijms222111782.
Texto completoTesis sobre el tema ""nor tomato mutant""
D'INCA', ERICA. "MASTER REGULATORS OF THE VEGETATIVE-TO-MATURE ORGAN TRANSITION IN GRAPEVINE: THE ROLE OF NAC TRANSCRIPTION FACTORS". Doctoral thesis, 2017. http://hdl.handle.net/11562/961366.
Texto completoGrapevine is the most widely cultivated and economically important fruit crop in the world. Viticulture has been affected by the global warming currently under way over the past few decades (Webb et al., 2007). Improving the genetics of key grapevine functions is needed to keep producing high quality grapes and wine. In this context, a challenging task is to identify master regulators that program the development of grapevine organs and control transition from vegetative-to-mature growth featured by grape berries during the annual plant cycle. This transition, called véraison, is marked by profound biochemical, physiological and transcriptomic modifications that allow vegetative green berries to enter the ripening process. Thanks to an integrated network analysis performed on the grapevine global gene expression atlas and from a large berry transcriptomic data set (Massonnet, 2015; Palumbo et al., 2014; Fasoli et al., 2012) a new category of genes, called ‘switch’ genes, was identified; they were significantly up-regulated during the developmental shift and inversely correlated with many genes suppressed during the mature growth phase. Among them, plant-specific NAM/ATAF/CUC (NAC) transcription factors represent an interesting gene family due to their key role in the biological processes in plant development and stress responses (Jensen et al., 2014). Five NAC genes were selected for functional characterization as key factor candidates of the major transcriptome reprogramming during grapevine development. VvNAC11, VvNAC13, VvNAC33 and VvNAC60 were identified as ‘switch’ genes in the above-mentioned analysis whereas VvNAC03 was selected because it is a close homologue of tomato NOR (non-ripening), known for its crucial role in tomato fruit ripening regulation (Giovannoni, 2004; Giovannoni et al., 1995). Firstly, the five transcription factors were transiently over-expressed in Vitis vinifera to get an overview of their primary effects on native species. Secondly, we obtained grapevine plants that were stably transformed with VvNAC33 and VvNAC60 and subjected to molecular/phenotypic characterizations. VvNAC33 seemed to be involved in negative regulation of photosynthesis since over-expressing leaves revealed a chlorophyll breakdown, while VvNAC60 affected regular plant development, showing a slight growth and earlier stem lignification in comparison to a same-age plant control. These results reflected typical behaviors of plants undergoing ripening and senescence, thus supporting our working hypothesis proposing a crucial role of NACs in the transition from vegetative to mature development in grapevine. In order to identify downstream targets of the NAC transcription factors analyzed in this work, we performed microarray analysis on leaves of transient and stable ectopic expressing plants. We noted that both over-expressions affected a wide range of cellular processes and among the most represented functional categories we found transport, secondary metabolism and transcription factor activity. The identification of VvMYBA1, a known grapevine regulator of the anthocyanin biosynthetic pathway (Kobayashi et al., 2002), as VvNAC60 target suggests a VvNAC60 role in processes like anthocyanin biosynthesis featured by grape berries at the onset of ripening. Another approach used to clarify NACs roles was to check the ability of VvNACs to fulfil the tomato NOR function. Preliminary results revealed that VvNAC03 and VvNAC60 could partially complement the nor mutation in tomato, establishing a partial ripening phenotype in fruits. Taken together, these findings suggest the ability of the selected VvNACs to affect the expression of genes involved in the regulatory network that controls the developmental shift to a mature phase in grapevine. This work has shed some light on the roles of these NACs in grapevine development, but further analysis must be conducted to fully elucidate the molecular machinery in this complex regulation system.
"Genetic-Physiological studies of the tomato mutants alcobaça (alc), non-ripening (nor) e ripening-inhibitor (rin)". Tese, BIBLIOTECA CENTRAL DA UFLA, 2003. http://bibtede.ufla.br/tede//tde_busca/arquivo.php?codArquivo=520.
Texto completoCapítulos de libros sobre el tema ""nor tomato mutant""
Bartoszewski, G., O. Fedorowicz, S. Malepszy, A. Smigocki y K. Niemirowicz-Szczytt. "Unpredictable Phenotype Change Connected with Agrobacterium Tumefaciens Mediated Transformation of Non-Ripening Tomato Mutant". En Biology and Biotechnology of the Plant Hormone Ethylene II, 399–400. Dordrecht: Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-4453-7_73.
Texto completoActas de conferencias sobre el tema ""nor tomato mutant""
Syrova, D. S., V. Y. Shakhnazarova, A. I. Shaposhnikov, A. A. Belimov y Y. V. Gogolev. "The intensity of root colonization by phytopathogenic fungus and rhizobacterium depends on the genotype of tomatoes and abscisic acid". En 2nd International Scientific Conference "Plants and Microbes: the Future of Biotechnology". PLAMIC2020 Organizing committee, 2020. http://dx.doi.org/10.28983/plamic2020.242.
Texto completoInformes sobre el tema ""nor tomato mutant""
Friedman, Haya, Julia Vrebalov, James Giovannoni y Edna Pesis. Unravelling the Mode of Action of Ripening-Specific MADS-box Genes for Development of Tools to Improve Banana Fruit Shelf-life and Quality. United States Department of Agriculture, enero de 2010. http://dx.doi.org/10.32747/2010.7592116.bard.
Texto completoAntignus, Yehezkiel, Ernest Hiebert, Shlomo Cohen y Susan Webb. Approaches for Studying the Interaction of Geminiviruses with Their Whitefly Vector Bemisia tabaci. United States Department of Agriculture, julio de 1995. http://dx.doi.org/10.32747/1995.7604928.bard.
Texto completoWagner, D. Ry, Eliezer Lifschitz y Steve A. Kay. Molecular Genetic Analysis of Flowering in Arabidopsis and Tomato. United States Department of Agriculture, mayo de 2002. http://dx.doi.org/10.32747/2002.7585198.bard.
Texto completoTadmor, Yaakov, Zachary Lippman, David Jackson y Dani Zamir. three crops test for the ODO breeding method. United States Department of Agriculture, noviembre de 2013. http://dx.doi.org/10.32747/2013.7594397.bard.
Texto completoLevin, Ilan, Avtar K. Handa, Avraham Lalazar y Autar K. Mattoo. Modulating phytonutrient content in tomatoes combining engineered polyamine metabolism with photomorphogenic mutants. United States Department of Agriculture, diciembre de 2006. http://dx.doi.org/10.32747/2006.7587724.bard.
Texto completoLapidot, Moshe, Linda Hanley-Bowdoin, Jane E. Polston y Moshe Reuveni. Geminivirus-resistant Tomato Plants: Combining Transgenic and Conventional Strategies for Multi-viral Resistance. United States Department of Agriculture, diciembre de 2010. http://dx.doi.org/10.32747/2010.7592639.bard.
Texto completoFriedmann, Michael, Charles J. Arntzen y Hugh S. Mason. Expression of ETEC Enterotoxin in Tomato Fruit and Development of a Prototype Transgenic Tomato for Dissemination as an Oral Vaccine in Developing Countries. United States Department of Agriculture, marzo de 2003. http://dx.doi.org/10.32747/2003.7585203.bard.
Texto completoManulis, Shulamit, Christine D. Smart, Isaac Barash, Guido Sessa y Harvey C. Hoch. Molecular Interactions of Clavibacter michiganensis subsp. michiganensis with Tomato. United States Department of Agriculture, enero de 2011. http://dx.doi.org/10.32747/2011.7697113.bard.
Texto completoKapulnik, Yoram, Maria J. Harrison, Hinanit Koltai y Joseph Hershenhorn. Targeting of Strigolacatones Associated Pathways for Conferring Orobanche Resistant Traits in Tomato and Medicago. United States Department of Agriculture, julio de 2011. http://dx.doi.org/10.32747/2011.7593399.bard.
Texto completoRodriguez, Russell J. y Stanley Freeman. Gene Expression Patterns in Plants Colonized with Pathogenic and Non-pathogenic Gene Disruption Mutants of Colletotrichum. United States Department of Agriculture, febrero de 2009. http://dx.doi.org/10.32747/2009.7592112.bard.
Texto completo