Artículos de revistas sobre el tema "Nonradiative energy transfer"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Nonradiative energy transfer.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Nonradiative energy transfer".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Tewari, K. K. y S. D. Pandey. "Pb2+→Mn2+nonradiative energy transfer in KBr". Physical Review B 40, n.º 4 (1 de agosto de 1989): 2101–8. http://dx.doi.org/10.1103/physrevb.40.2101.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Suchocki, Andrzej, Zbigniew Kalinski, Jerzy M. Langer y Richard C. Powell. "Nonradiative energy‐transfer processes in Cd1−xMnxF2crystals". Journal of Applied Physics 71, n.º 1 (enero de 1992): 28–36. http://dx.doi.org/10.1063/1.350703.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Stepashkina, A. S., D. M. Samosvat, O. P. Chikalova-Luzina y G. G. Zegrya. "Nonradiative resonance energy transfer between quantum dots". Journal of Physics: Conference Series 461 (28 de agosto de 2013): 012001. http://dx.doi.org/10.1088/1742-6596/461/1/012001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Basun, S. A., S. P. Feofilov y A. A. Kaplyanskii. "Fast resonant nonradiative energy transfer in alexandrite". Journal of Luminescence 48-49 (enero de 1991): 166–70. http://dx.doi.org/10.1016/0022-2313(91)90097-f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Prochazka, K., B. Bednar, E. Mukhtar, P. Svoboda, J. Trnena y M. Almgren. "Nonradiative energy transfer in block copolymer micelles". Journal of Physical Chemistry 95, n.º 11 (mayo de 1991): 4563–68. http://dx.doi.org/10.1021/j100164a069.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Bililign, Solomon, Brian C. Hattaway y Gwang-Hi Jeung. "Nonradiative Energy Transfer in Li*(3p)−CH4Collisions". Journal of Physical Chemistry A 106, n.º 2 (enero de 2002): 222–27. http://dx.doi.org/10.1021/jp012616w.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Guzelturk, Burak, Murat Olutas, Savas Delikanli, Yusuf Kelestemur, Onur Erdem y Hilmi Volkan Demir. "Nonradiative energy transfer in colloidal CdSe nanoplatelet films". Nanoscale 7, n.º 6 (2015): 2545–51. http://dx.doi.org/10.1039/c4nr06003b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kaur, Amrita, Pardeep Kaur y Sahil Ahuja. "Förster resonance energy transfer (FRET) and applications thereof". Analytical Methods 12, n.º 46 (2020): 5532–50. http://dx.doi.org/10.1039/d0ay01961e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Samosvat, D. M., O. P. Chikalova-Luzina y G. G. Zegrya. "Nonradiative resonance energy transfer between semiconductor quantum dots". Journal of Experimental and Theoretical Physics 121, n.º 1 (julio de 2015): 76–95. http://dx.doi.org/10.1134/s1063776115060138.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

MORAWETZ, H. "Studies of Synthetic Polymers by Nonradiative Energy Transfer". Science 240, n.º 4849 (8 de abril de 1988): 172–76. http://dx.doi.org/10.1126/science.240.4849.172.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Eteng, Akaa Agbaeze, Sharul Kamal Abdul Rahim y Chee Yen Leow. "Wireless Nonradiative Energy Transfer: Antenna performance enhancement techniques." IEEE Antennas and Propagation Magazine 57, n.º 3 (junio de 2015): 16–22. http://dx.doi.org/10.1109/map.2015.2437281.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Aceves, R., U. Caldiño G, J. Rubio O y E. Camarillo. "Nonradiative energy transfer Sn2+ → Mn2+ in monocrystalline KBr". Journal of Luminescence 65, n.º 3 (agosto de 1995): 113–19. http://dx.doi.org/10.1016/0022-2313(95)00069-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Ibrayev N. Kh., Kucherenko M. G., Temirbayeva D. A. y Seliverstova E. V. "Plasmon-activated Forster energy transfer in molecular systems". Optics and Spectroscopy 130, n.º 5 (2022): 569. http://dx.doi.org/10.21883/eos.2022.05.54441.1-22.

Texto completo
Resumen
To explain the experimentally observed effect of silver nanoparticles on the fluorescence of organic dyes and the nonradiative intermolecular transfer of electronic excitation energy in multilayer nanostructures, the previously proposed theoretical model of plasmon resonance in spherical nanoparticles of metals was used. The rates of radiative and nonradiative (FRET) processes in film structures with Ag nanoparticles were calculated for fluorescein and rhodamine B molecules, as well as for two-component systems fluorescein-nile red (NR) and rhodamine B-NR. A version of the model was used that takes into account the effect of NPs on FRET between molecules, the radiative decay of donor and acceptor molecules, and the energy transfer from the dye to plasmonic nanoparticles. The calculation of the UDA rate for pairs with different energy transfer efficiency showed a greater increase in the UDA parameter for the fluorescein-nile red pair than for the rhodamine B-nile red pair. Estimation of the fluorescence enhancement factor of donor and energy acceptor molecules and the rate of energy transfer from the dye to silver NPs showed their insignificant contribution to the formation of the resulting energy transfer efficiency enhancement in the presence of plasmonic NPs. Keywords: energy transfer, silver nanoparticles, plasmon, model
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Kucherenko, M. G., V. N. Stepanov y N. Yu Kruchinin. "Intermolecular nonradiative energy transfer in clusters with plasmonic nanoparticles". Optics and Spectroscopy 118, n.º 1 (enero de 2015): 103–10. http://dx.doi.org/10.1134/s0030400x15010154.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Samosvat, D. M., O. P. Chikalova-Luzina, A. S. Stepashkina y G. G. Zegrya. "Nonradiative resonance energy transfer between two semiconductor quantum dots". Technical Physics Letters 39, n.º 1 (enero de 2013): 74–77. http://dx.doi.org/10.1134/s1063785013010240.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Morawetz, Herbert. "Recent Applications of Nonradiative Energy Transfer to Polymer Studies". Collection of Czechoslovak Chemical Communications 58, n.º 10 (1993): 2266–71. http://dx.doi.org/10.1135/cccc19932266.

Texto completo
Resumen
Recent studies of polymers in solution and in bulk by energy transfer between two fluorescent labels are reviewed. Such studies are concerned with the equilibrium and dynamics of polymer chain expansion, molecular cluster formation in solution, the miscibility of polymers in bulk, and the interdiffusion of polymer latex particles.
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Poddubny, A. N. y A. V. Rodina. "Nonradiative and radiative Förster energy transfer between quantum dots". Journal of Experimental and Theoretical Physics 122, n.º 3 (marzo de 2016): 531–38. http://dx.doi.org/10.1134/s1063776116030092.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Chikalova-Luzina, O. P., D. M. Samosvat, V. M. Vyatkin y G. G. Zegrya. "Nonradiative resonance energy transfer in the quantum dot system". Physica E: Low-dimensional Systems and Nanostructures 114 (octubre de 2019): 113568. http://dx.doi.org/10.1016/j.physe.2019.113568.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Singldinger, Andreas, Moritz Gramlich, Christoph Gruber, Carola Lampe y Alexander S. Urban. "Nonradiative Energy Transfer between Thickness-Controlled Halide Perovskite Nanoplatelets". ACS Energy Letters 5, n.º 5 (1 de abril de 2020): 1380–85. http://dx.doi.org/10.1021/acsenergylett.0c00471.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Kucherenko, M. G. y D. A. Kislov. "Plasmon-activated intermolecular nonradiative energy transfer in spherical nanoreactors". Journal of Photochemistry and Photobiology A: Chemistry 354 (marzo de 2018): 25–32. http://dx.doi.org/10.1016/j.jphotochem.2017.10.020.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Tomin, V. I. "Nonradiative energy transfer in a concentrated solution of prodan". Optics and Spectroscopy 101, n.º 4 (octubre de 2006): 563–67. http://dx.doi.org/10.1134/s0030400x06100109.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Muoz F., A., G. Muoz H. y J. Rubio O. "Nonradiative energy transfer fromCu+toMn2+ions in monocrystalline NaCl". Physical Review B 41, n.º 15 (15 de mayo de 1990): 10830–34. http://dx.doi.org/10.1103/physrevb.41.10830.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Khrebtov, A. I., R. R. Reznik, E. V. Ubyivovk, A. P. Litvin, I. D. Skurlov, P. S. Parfenov, A. S. Kulagina, V. V. Danilov y G. E. Cirlin. "Nonradiative Energy Transfer in Hybrid Nanostructures with Varied Dimensionality". Semiconductors 53, n.º 9 (septiembre de 2019): 1258–61. http://dx.doi.org/10.1134/s1063782619090082.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Gaudreau, L., K. J. Tielrooij, G. E. D. K. Prawiroatmodjo, J. Osmond, F. J. García de Abajo y F. H. L. Koppens. "Universal Distance-Scaling of Nonradiative Energy Transfer to Graphene". Nano Letters 13, n.º 5 (15 de abril de 2013): 2030–35. http://dx.doi.org/10.1021/nl400176b.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

LAREO, LEONARDO R. y JANNETH GONZÁLEZ. "INTRAMOLECULAR EXCITED ENERGY TRANSFER PATHWAYS IN PROTEINS". Journal of Theoretical and Computational Chemistry 07, n.º 01 (febrero de 2008): 91–102. http://dx.doi.org/10.1142/s0219633608003629.

Texto completo
Resumen
The transfer of energy perturbations within protein structure is an important phenomenon in many biological processes. In particular, the transfer of energy perturbations within a molecule in the absence of electron transfer is critical to the understanding of such processes as signaling involving receptors, channels, and enzymes among others, and to the design and development of relevant conducting materials. In this work, we have proposed a mechanism to explain this nonradiative, nonelectron energy transfer based on the π-orbital interactions of aromatic amino acids. Additionally, some theoretical background and possible computational approaches are presented as support for the proposal.
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Ибраев, Н. Х., М. Г. Кучеренко, Д. А. Темирбаева y Е. В. Селиверстова. "Плазмон-активированный фёрстеровский перенос энергии в молекулярных системах". Оптика и спектроскопия 130, n.º 5 (2022): 721. http://dx.doi.org/10.21883/os.2022.05.52426.1-22.

Texto completo
Resumen
To explain the experimentally observed effect of silver nanoparticles on the fluorescence of organic dyes and the nonradiative intermolecular transfer of electronic excitation energy in multilayer nanostructures, the previously proposed theoretical model of plasmon resonance in spherical nanoparticles of metals was used. The rates of radiative and nonradiative (FRET) processes in film structures with Ag nanoparticles were calculated for fluorescein and rhodamine B molecules, as well as for two-component systems fluorescein–nile red (NR) and rhodamine B–NR. A version of the model was used that takes into account the effect of NPs on FRET between molecules, the radiative decay of donor and acceptor molecules, and the energy transfer from the dye to plasmonic nanoparticles. The calculation of the UDA rate for pairs with different energy transfer efficiency showed a greater increase in the UDA parameter for the fluorescein–nile red pair than for the rhodamine B–nile red pair. Estimation of the fluorescence enhancement factor of donor and energy acceptor molecules and the rate of energy transfer from the dye to silver NPs showed their insignificant contribution to the formation of the resulting energy transfer efficiency enhancement in the presence of plasmonic NPs.
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Avila-Huerta, Mariana D., Edwin J. Ortiz-Riaño, Diana L. Mancera-Zapata, Karen Cortés-Sarabia y Eden Morales-Narváez. "Facile Determination of COVID-19 Seroconversion via Nonradiative Energy Transfer". ACS Sensors 6, n.º 6 (28 de mayo de 2021): 2136–40. http://dx.doi.org/10.1021/acssensors.1c00795.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

van de Haar, Marie Anne, Anne C. Berends, Michael R. Krames, Liudmyla Chepyga, Freddy T. Rabouw y Andries Meijerink. "Eu3+ Sensitization via Nonradiative Interparticle Energy Transfer Using Inorganic Nanoparticles". Journal of Physical Chemistry Letters 11, n.º 3 (10 de enero de 2020): 689–95. http://dx.doi.org/10.1021/acs.jpclett.9b03764.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Gan, Daoji y L. Andrew Lyon. "Interfacial Nonradiative Energy Transfer in Responsive Core−Shell Hydrogel Nanoparticles". Journal of the American Chemical Society 123, n.º 34 (agosto de 2001): 8203–9. http://dx.doi.org/10.1021/ja015974l.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Bednář, B., L. Karásek y J. Pokorný. "Nonradiative energy transfer studies of block copolymers in selective solvents". Polymer 37, n.º 23 (noviembre de 1996): 5261–68. http://dx.doi.org/10.1016/0032-3861(96)00344-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Park, Jun Kue, Kyu Won Lee, W. Lee y Cheol Eui Lee. "Nonradiative energy transfer in ZnO nanorods/dye-doped polymer heterostructures". Applied Physics Letters 94, n.º 23 (8 de junio de 2009): 233301. http://dx.doi.org/10.1063/1.3153117.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Levin, M. B., M. G. Reva, V. V. Rodchenkova y Boris M. Uzhinov. "Ratio of radiative to nonradiative energy transfer in lasing systems". Soviet Journal of Quantum Electronics 16, n.º 6 (30 de junio de 1986): 833–36. http://dx.doi.org/10.1070/qe1986v016n06abeh006927.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Konyshev, Yu V., R. T. Nasibullin, V. N. Cherepanov, G. V. Baryshnikov y R. R. Valiev. "Theoretical Study of Nonradiative Energy Transfer from Exciplex to Perovskites". Russian Physics Journal 62, n.º 10 (febrero de 2020): 1911–16. http://dx.doi.org/10.1007/s11182-020-01922-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Efimova, S. L., A. V. Sorokin, A. N. Lebedenko, Yu V. Malyukin y E. N. Obukhova. "Nonradiative energy transfer in carbocyanine dye compositions inside surfactant micelles". Journal of Applied Spectroscopy 73, n.º 2 (marzo de 2006): 164–70. http://dx.doi.org/10.1007/s10812-006-0053-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Cho, Eun-Bum y Dukjoon Kim. "Nonradiative Energy Transfer in Chromophore-Tagged PS–PEO Diblock Copolymers". Macromolecular Symposia 249-250, n.º 1 (abril de 2007): 437–44. http://dx.doi.org/10.1002/masy.200750416.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Karpińska, Miriam, Minpeng Liang, Roman Kempt, Kati Finzel, Machteld Kamminga, Mateusz Dyksik, Nan Zhang et al. "Nonradiative Energy Transfer and Selective Charge Transfer in a WS2/(PEA)2PbI4 Heterostructure". ACS Applied Materials & Interfaces 13, n.º 28 (6 de julio de 2021): 33677–84. http://dx.doi.org/10.1021/acsami.1c08377.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Choi, Yong Gyu, Kyong Hon Kim, Yong Seop Han y Jong Heo. "Sensitizing effect of Yb3+ on near-infrared fluorescence emission of Cr4+-doped calcium aluminate glasses". Journal of Materials Research 15, n.º 2 (febrero de 2000): 278–81. http://dx.doi.org/10.1557/jmr.2000.0045.

Texto completo
Resumen
We have demonstrated that an efficient energy transfer takes place from Yb3+ to Cr4+ in calcium aluminate glasses. Yb3+ improves excitation efficiency at around 980 nm, enhancing emission intensity of Cr4+ fluorescence at 1.2–1.6 μm. Nonradiative energy transfer via electric dipole–dipole interaction between ytterbium and chromium ions was found to be dominant over radiative Yb3+ → Cr4+ energy transfer. A diffusionlimited energy transfer mechanism well explains the decay behavior of Yb3+/Cr4+- codoped glasses. This codoping scheme may be applicable to other Cr4+-containing crystals and glasses.
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Grajek, Hanna, Jacek Kubicki, Ignacy Gryczyński, Jerzy Karolczak, Grażyna Żurkowska, Agnieszka I. Piotrowicz-Cieślak y Piotr Bojarski. "Effect of Dimer Structure and Inhomogeneous Broadening of Energy Levels on the Action of Flavomononucleotide in Rigid Polyvinyl Alcohol Films". International Journal of Molecular Sciences 22, n.º 14 (20 de julio de 2021): 7759. http://dx.doi.org/10.3390/ijms22147759.

Texto completo
Resumen
The results of time-resolved fluorescence measurements of flavin mononucleotide (FMN) in rigid polyvinyl alcohol films (PVA) demonstrate that fluorescence intensity decays are strongly accelerated in the presence of fluorescent dimers and nonradiative energy transfer processes. The fluorescence decay originating both from H and J dimer states of FMN was experimentally observed for the first time. The mean fluorescence lifetimes for FMN dimers were obtained: τfl = 2.66 ns (at λexc = 445 nm) and τfl = 2.02 (at λexc = 487 nm) at λobs = 600 nm and T = 253 K from H and J state of dimers, respectively. We show that inhomogeneous orientational broadening of energy levels (IOBEL) affects the shape of the fluorescence decay and leads to the dependence of the average monomer fluorescence lifetime on excitation wavelength. IOBEL affected the nonradiative energy transfer and indicated that different flavin positioning in the protein pocket could (1) change the spectroscopic properties of flavins due to the existence of “blue” and “red” fluorescence centers, and (2) diminish the effectiveness of energy transfer between FMN molecules.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Johnson, E. y R. Aroca. "Energy transfer between Langmuir–Blodgett monolayers of organic dyes". Canadian Journal of Chemistry 69, n.º 11 (1 de noviembre de 1991): 1728–31. http://dx.doi.org/10.1139/v91-253.

Texto completo
Resumen
The Langmuir–Blodgett technique has been used to prepare multilayer structures in order to investigate the distance dependence of the nonradiative transfer of electronic energy from a donor plane of molecules to an acceptor plane. The distance between well-separated donor molecules and acceptor molecules was carefully controlled by spacer layers of arachidic acid. New systems for energy transfer studies are considered that use N-hexyl-N′-ethyl-3,4:9,10-perylenetetracarboxyldiimide (HPTCDE) and N-hexyl-3,4:9,10-perylenetetracarboxylmonoimide (HPTCO) as donors and lutetium diphthalocyanine (LuPc2) as acceptor. The limitations of the Förster dipole theory of energy transfer from a donor monolayer of point dipoles to an acceptor layer are discussed. Key words: energy transfer, Langmuir–Blodgett, diphthalocyanine, perylene.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

An, Li Min, Yan Fang Duan, Hong Liu, Jie Yi, Chun Xia Liu, Xiao Guang Li, Li Zhi He, Ling Song Zhou, Pu Yu Wang y Wen Yu An. "Fluorescence from the Compound System of PVK Molecules and SiO2 Nanoparticles with Different Sizes". Advanced Materials Research 981 (julio de 2014): 797–800. http://dx.doi.org/10.4028/www.scientific.net/amr.981.797.

Texto completo
Resumen
SiO2nanoparticles (NPs) are synthesized in ethanol solution and mixed with polyvinyl carbazole (PVK). The sizes of SiO2NPs are 40nm and 60nm. PVK/SiO2NPs compound systems with different sizes and with different ratios of mass fraction are obtained. Photoluminescence spectra are employed to research the optical properties of PVK molecules and PVK/SiO2NPs compound system. In compound system, the process of interface energy transfer between PVK and SiO2NPs are observed. The mainly energy transfer form is nonradiative resonance transfer.
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

El Kabbash, Mohamed, Alireza Rahimi Rashed, Kandammathe Valiyaveedu Sreekanth, Antonio De Luca, Melissa Infusino y Giuseppe Strangi. "Plasmon-Exciton Resonant Energy Transfer: Across Scales Hybrid Systems". Journal of Nanomaterials 2016 (2016): 1–21. http://dx.doi.org/10.1155/2016/4819040.

Texto completo
Resumen
The presence of an excitonic element in close proximity of a plasmonic nanostructure, under certain conditions, may lead to a nonradiative resonant energy transfer known as Exciton Plasmon Resonant Energy Transfer (EPRET) process. The exciton-plasmon coupling and dynamics have been intensely studied in the last decade; still many relevant aspects need more in-depth studies. Understanding such phenomenon is not only important from fundamental viewpoint, but also essential to unlock many promising applications. In this review we investigate the plasmon-exciton resonant energy transfer in different hybrid systems at the nano- and mesoscales, in order to gain further understanding of such processes across scales and pave the way towards active plasmonic devices.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Yeltik, Aydan, Gokce Kucukayan-Dogu, Burak Guzelturk, Somayeh Fardindoost, Yusuf Kelestemur y Hilmi Volkan Demir. "Evidence for Nonradiative Energy Transfer in Graphene-Oxide-Based Hybrid Structures". Journal of Physical Chemistry C 117, n.º 48 (20 de noviembre de 2013): 25298–304. http://dx.doi.org/10.1021/jp408465a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Zygelman, B., A. Dalgarno, M. Kimura y N. F. Lane. "Radiative and nonradiative charge transfer inHe++H collisions at low energy". Physical Review A 40, n.º 5 (1 de septiembre de 1989): 2340–45. http://dx.doi.org/10.1103/physreva.40.2340.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Yang, Zhenling, Yuqiang Liu, Xing He, Yanan Wen y Yanqiang Yang. "Competition between surface trapping and nonradiative energy transfer to gold nanofilm". Journal of Applied Physics 108, n.º 9 (noviembre de 2010): 094309. http://dx.doi.org/10.1063/1.3503518.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Di Bartolo, B., J. Danko y D. Pacheco. "Nonradiative energy transfer without lifetime quenching in doped Mn-based crystals". Physical Review B 35, n.º 12 (15 de abril de 1987): 6386–94. http://dx.doi.org/10.1103/physrevb.35.6386.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Pokorna, Veronika, Frantisek Mikes, Jan Pecka y Drahomir Vyprachticky. "Study of poly(methyl methacrylate) stereocomplex formation by nonradiative energy transfer". Macromolecules 26, n.º 8 (abril de 1993): 2139–40. http://dx.doi.org/10.1021/ma00060a052.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Shokurov, Alexander V., Lubov’ V. Nikolayeva, Darina N. Novak, Vladimir V. Arslanov y Sofiya L. Selektor. "Nonradiative energy transfer in planar systems based on structurally different fluorophores". Mendeleev Communications 27, n.º 4 (julio de 2017): 366–67. http://dx.doi.org/10.1016/j.mencom.2017.07.015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Kühne, H., G. Weiser, E. I. Terukov, A. N. Kusnetsov y V. Kh Kudoyarova. "Resonant nonradiative energy transfer to erbium ions in amorphous hydrogenated silicon". Journal of Applied Physics 86, n.º 2 (15 de julio de 1999): 896–901. http://dx.doi.org/10.1063/1.370820.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Cardullo, R. A., S. Agrawal, C. Flores, P. C. Zamecnik y D. E. Wolf. "Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer." Proceedings of the National Academy of Sciences 85, n.º 23 (1 de diciembre de 1988): 8790–94. http://dx.doi.org/10.1073/pnas.85.23.8790.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Yuldasheva, D. K., D. N. Pevtsov, A. V. Gadomska y S. A. Tovstun. "Kinetics of Nonradiative Energy Transfer between Close-Packed InP/ZnS Nanocrystals". High Energy Chemistry 56, n.º 6 (diciembre de 2022): 399–410. http://dx.doi.org/10.1134/s0018143922060182.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía