Libros sobre el tema "Nonlocal Neumann boundary conditions"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 15 mejores mejores libros para su investigación sobre el tema "Nonlocal Neumann boundary conditions".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
E, Zorumski William y Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Buscar texto completoE, Zorumski William y Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Buscar texto completoE, Zorumski William y Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Buscar texto completoE, Zorumski W., Watson Willie R y Langley Research Center, eds. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Buscar texto completoE, Zorumski W., Watson Willie R y Langley Research Center, eds. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Buscar texto completoSun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Buscar texto completoSun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Buscar texto completoSun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Buscar texto completoSun, Xian-He. A high-order direct solver for Helmholtz equations with Neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.
Buscar texto completoPeriodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.
Buscar texto completoSolution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.
Buscar texto completoNational Aeronautics and Space Administration (NASA) Staff. Solution of the Three-Dimensional Helmholtz Equation with Nonlocal Boundary Conditions. Independently Published, 2018.
Buscar texto completoNational Aeronautics and Space Administration (NASA) Staff. High-Order Direct Solver for Helmholtz Equations with Neumann Boundary Conditions. Independently Published, 2018.
Buscar texto completoMann, Peter. The Stationary Action Principle. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0007.
Texto completoEdmunds, D. E. y W. D. Evans. Second-Order Differential Operators on Arbitrary Open Sets. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0007.
Texto completo