Siga este enlace para ver otros tipos de publicaciones sobre el tema: Nonlocal Neumann boundary conditions.

Libros sobre el tema "Nonlocal Neumann boundary conditions"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 15 mejores mejores libros para su investigación sobre el tema "Nonlocal Neumann boundary conditions".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore libros sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

E, Zorumski William y Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

E, Zorumski William y Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

E, Zorumski William y Langley Research Center, eds. Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

E, Zorumski W., Watson Willie R y Langley Research Center, eds. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

E, Zorumski W., Watson Willie R y Langley Research Center, eds. Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Sun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Sun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Sun, Xian-He. A high-order direct solver for helmholtz equations with neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Sun, Xian-He. A high-order direct solver for Helmholtz equations with Neumann boundary conditions. Hampton, VA: Institute for Computer Applications in Science and Engineering, NASA Langley Research Center, 1997.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Periodic time-domain nonlocal nonreflecting boundary conditions for duct acoustics. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Solution of the three-dimensional Helmholtz equation with nonlocal boundary conditions. Hampton, Va: National Aeronautics and Space Administration, Langley Research Center, 1995.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

National Aeronautics and Space Administration (NASA) Staff. Solution of the Three-Dimensional Helmholtz Equation with Nonlocal Boundary Conditions. Independently Published, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

National Aeronautics and Space Administration (NASA) Staff. High-Order Direct Solver for Helmholtz Equations with Neumann Boundary Conditions. Independently Published, 2018.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Mann, Peter. The Stationary Action Principle. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198822370.003.0007.

Texto completo
Resumen
This crucial chapter focuses on the stationary action principle. It introduces Lagrangian mechanics, using first-order variational calculus to derive the Euler–Lagrange equation, and the inverse problem is described. The chapter then considers the Ostrogradsky equation and discusses the properties of the extrema using the second-order variation to the action. It then discusses the difference between action functions (of Dirichlet boundary conditions) and action functionals of the extremal path. The different types of boundary conditions (Dirichlet vs Neumann) are elucidated. Topics discussed include Hessian conditions, Douglas’s theorem, the Jacobi last multiplier, Helmholtz conditions, Noether-type variation and Frenet–Serret frames, as well as concepts such as on shell and off shell. Actions of non-continuous extremals are examined using Weierstrass–Erdmann corner conditions, and the action principle is written in the most general form as the Hamilton–Suslov principle. Important applications of the Euler–Lagrange formulation are highlighted, including protein folding.
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Edmunds, D. E. y W. D. Evans. Second-Order Differential Operators on Arbitrary Open Sets. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198812050.003.0007.

Texto completo
Resumen
In this chapter, three different methods are described for obtaining nice operators generated in some L2 space by second-order differential expressions and either Dirichlet or Neumann boundary conditions. The first is based on sesquilinear forms and the determination of m-sectorial operators by Kato’s First Representation Theorem; the second produces an m-accretive realization by a technique due to Kato using his distributional inequality; the third has its roots in the work of Levinson and Titchmarsh and gives operators T that are such that iT is m-accretive. The class of such operators includes the self-adjoint operators, even ones that are not bounded below. The essential self-adjointness of Schrödinger operators whose potentials have strong local singularities are considered, and the quantum-mechanical interpretation of essential self-adjointness is discussed.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía