Literatura académica sobre el tema "Nonlinear water waves"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nonlinear water waves".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Nonlinear water waves"

1

Horikawa, K., H. Maruo y A. D. D. Craik. "Nonlinear Water Waves". Journal of Applied Mechanics 56, n.º 2 (1 de junio de 1989): 487. http://dx.doi.org/10.1115/1.3176115.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Constantin, Adrian. "Nonlinear water waves". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 370, n.º 1964 (13 de abril de 2012): 1501–4. http://dx.doi.org/10.1098/rsta.2011.0594.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Zhang, Yao, Andrew Brian Kennedy, Joannes Westerink, Nishant Panda y Client Dawson. "NEW BOUSSINESQ SYSTEM FOR NONLINEAR WATER WAVES". Coastal Engineering Proceedings 1, n.º 33 (12 de octubre de 2012): 4. http://dx.doi.org/10.9753/icce.v33.waves.4.

Texto completo
Resumen
In this paper, a new Boussinesq water wave theory is derived which can simulate highly dispersive nonlinear waves, their depth-varying velocities, and wave-induced currents, from very deep, but still finite, depths through the surf zone to the shoreline.. Boussinesq scaling is employed. We removed the irrotationality assumption by using polynomial basis functions for velocity profile which are inserted into basic equations of motion. Keep terms up to the desired approximation level and solve the coupled weighted residual system together with vertically integrated mass equation. The computational cost is similar to normal Boussinesq theories although there are more unknown variables to be solved than that in normal Boussinesq models. Because we can reduce the number of the coupled equations by multiplying some coefficients and subtracting from each other which means the matix to be solved is in similar size as normal Boussinesq models. The models show rapid convergence to exact solutions for linear dispersion, shoaling, and orbital velocities; however, properties may be simultaneously and substantially improved for a given order of approximation using asymptotic rearrangements. This improvement is accomplished using the large numbers of degrees of freedom inherent in the definitions of the polynomial basis functions either to match additional terms in a Taylor series, or to minimize errors over a range. Future work will be focused on rotational performance in 2D model by including viscosity,breaking and turbulence.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Kartashova, Elena. "Nonlinear resonances of water waves". Discrete & Continuous Dynamical Systems - B 12, n.º 3 (2009): 607–21. http://dx.doi.org/10.3934/dcdsb.2009.12.607.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Wu, Theodore Yaotsu. "Modeling Nonlinear Dispersive Water Waves". Journal of Engineering Mechanics 125, n.º 7 (julio de 1999): 747–55. http://dx.doi.org/10.1061/(asce)0733-9399(1999)125:7(747).

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Scheffner, Norman W. "BIPERIODIC WAVES IN SHALLOW WATER". Coastal Engineering Proceedings 1, n.º 20 (29 de enero de 1986): 55. http://dx.doi.org/10.9753/icce.v20.55.

Texto completo
Resumen
The propagation of waves in shallow water is a phenomenon of significant practical importance. The ability to realistically predict the complex wave characteristics occurring in shallow water regions has always been an engineering goal which would make the development of solutions to practical engineering problems a reality. The difficulty in making such predictions stems from the fact that the equations governing the complex three-dimensional flow regime can not be solved without linearizing the problem. The linear equations are solvable; however, their solutions do not reflect the nonlinear features of naturally occurring waves. A recent advance (1984) in nonlinear mathematics has resulted in an explicit solution to a nonlinear equation relevant to water waves in shallow water. This solution possesses features found in observed nonlinear three-dimensional wave fields. The nonlinear mathematical formulation referred to above has never been compared with actual waves, so that its practical value is unknown. The purpose of the present investigation was to physically generate three-dimensional nonlinear waves and compare these with exact mathematical solutions. The goals were successfully completed by first generating the necessary wave patterns with the new U.S. Army Engineer Waterways Experiment Station, Coastal Engineering Research Center's (CERC) directional spectral wave generation facility. The theoretical solutions were then formed through the determination of a unique correspondence between the free parameters of the solution and the physical characteristics of the generated wave.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Peregrine, D. H., D. Skyner, M. Stiassnie y N. Dodd. "NONLINEAR EFFECTS ON FOCUSSED WATER WAVES". Coastal Engineering Proceedings 1, n.º 21 (29 de enero de 1988): 54. http://dx.doi.org/10.9753/icce.v21.54.

Texto completo
Resumen
A brief account is given of theory and experiments for water wave focussing. The theory uses weakly nonlinear wave modulation theory, that is the nonlinear Schrodinger equation, summarises earlier theoretical papers and augments them with numerical results. Experiments were performed to compare with theory. The limited comparison shown here indicates that the theory gives satisfactory results even for waves close to breaking. Both the numerical and experimental results indicate the importance of linear diffraction when waves are focussed. The relevance of diffraction is easily assessed, and is likely to dominate in many coastal examples of weak focussing.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Constantin, A. "Nonlinear water waves: introduction and overview". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 376, n.º 2111 (11 de diciembre de 2017): 20170310. http://dx.doi.org/10.1098/rsta.2017.0310.

Texto completo
Resumen
For more than two centuries progress in the study of water waves proved to be interdependent with innovative and deep developments in theoretical and experimental directions of investigation. In recent years, considerable progress has been achieved towards the understanding of waves of large amplitude. Within this setting one cannot rely on linear theory as nonlinearity becomes an essential feature. Various analytic methods have been developed and adapted to come to terms with the challenges encountered in settings where approximations (such as those provided by linear or weakly nonlinear theory) are ineffective. Without relying on simpler models, progress becomes contingent upon the discovery of structural properties, the exploitation of which requires a combination of creative ideas and state-of-the-art technical tools. The successful quest for structure often reveals unexpected patterns and confers aesthetic value on some of these studies. The topics covered in this issue are both multi-disciplinary and interdisciplinary: there is a strong interplay between mathematical analysis, numerical computation and experimental/field data, interacting with each other via mutual stimulation and feedback. This theme issue reflects some of the new important developments that were discussed during the programme ‘Nonlinear water waves’ that took place at the Isaac Newton Institute for Mathematical Sciences (Cambridge, UK) from 31st July to 25th August 2017. A cross-section of the experts in the study of water waves who participated in the programme authored the collected papers. These papers illustrate the diversity, intensity and interconnectivity of the current research activity in this area. They offer new insight, present emerging theoretical methodologies and computational approaches, and describe sophisticated experimental results. This article is part of the theme issue ‘Nonlinear water waves’.
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Wu, Theodore Yaotsu. "Nonlinear waves and solitons in water". Physica D: Nonlinear Phenomena 123, n.º 1-4 (noviembre de 1998): 48–63. http://dx.doi.org/10.1016/s0167-2789(98)00111-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

London, Steven D. "Weakly nonlinear shallow water magnetohydrodynamic waves". Geophysical & Astrophysical Fluid Dynamics 108, n.º 3 (10 de abril de 2014): 323–32. http://dx.doi.org/10.1080/03091929.2013.877133.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Nonlinear water waves"

1

Baumstein, Anatoly I. Saffman P. G. Saffman P. G. "Nonlinear water waves with shear /". Diss., Pasadena, Calif. : California Institute of Technology, 1997. http://resolver.caltech.edu/CaltechETD:etd-01042008-093737.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bird, Charlotte C. "Nonlinear interactions of water waves, wave groups and beaches". Thesis, University of Bristol, 1999. http://hdl.handle.net/1983/c8fedc4e-9c73-4791-b1d8-b4ff14646025.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Qu, Wendong Wu Theodore Y. T. "Studies on nonlinear dispersive water waves /". Diss., Pasadena, Calif. : California Institute of Technology, 2000. http://resolver.caltech.edu/CaltechETD:etd-08152006-140314.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Smith, Susan Frances. "Large transient waves in shallow water". Thesis, Imperial College London, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.313296.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

陳健行 y Kin-hang Chan. "Computational studies of forced, nonlinear waves in shallow water". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2001. http://hub.hku.hk/bib/B31224003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Ohl, Clifford Owen Groome. "Free surface disturbances and nonlinear runup around offshore structures". Thesis, University of Oxford, 2000. http://ora.ox.ac.uk/objects/uuid:320ff8da-c225-40da-a7dd-d6cf55c97b51.

Texto completo
Resumen
Diffraction of regular waves, focused wave groups, and random seas by arrays of vertical bottom mounted circular cylinders is investigated using theoretical, computational, and experimental methods. Free surface elevation η is the defining variable used to test the potential theory developed. In addition, the nonlinearity of focused wave groups is investigated through the Creamer nonlinear transform and analysis of numerical wave tank data. Linear focused wave group theory is reviewed as a method for predicting the probable shape of extreme events from random wave spectra. The Creamer nonlinear transform, a realistic model for steep waves on deep water, is applied in integral form to simulate nonlinear focused wave groups. In addition, the transform is used to facilitate analysis of nonlinear wave-wave interactions within focused wave groups from a uni-directional numerical wave tank developed at Imperial College London. Experiments in an offshore wave basin at HR Wallingford are designed to measure free surface elevation at multiple locations in the vicinity of a multicolumn structure subjected to regular and irregular waves for a range of frequencies and steepness. Results from regular wave data analysis for first order amplitudes are compared to analytical linear diffraction theory, which is shown to be accurate for predicting incident waves of low steepness. However, second and third order responses are also computed, and the effects in the vicinity of a second order near trapping frequency are compared to semi-analytical second order diffraction theory. Analytical linear diffraction theory is extended for application to focused wave groups and random seas. Experimental irregular wave data are analysed for comparison with this theory. Linear diffraction theory for random seas is shown to give an excellent prediction of incident wave spectral diffraction, while linear diffraction theory for focused wave groups works well for linearised extreme events.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Grataloup, Géraldine Léonie 1979. "Localization of nonlinear water waves over a random bottom". Thesis, Massachusetts Institute of Technology, 2003. http://hdl.handle.net/1721.1/16918.

Texto completo
Resumen
Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Civil and Environmental Engineering, 2003.
Includes bibliographical references (p. 87-90).
This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
by Géraldine Léonie Grataloup.
S.M.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Mathew, Joseph. "Nonlinear three-dimensional waves on water of varying depth". Thesis, Massachusetts Institute of Technology, 1990. http://hdl.handle.net/1721.1/14065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Liang, Junhong. "Linear and nonlinear analysis of shallow mixing layers /". View abstract or full-text, 2006. http://library.ust.hk/cgi/db/thesis.pl?CIVL%202006%20LIANG.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Villeneuve, Marc. "Nonlinear, dispersive, shallow-water waves developed by a moving bed". Thesis, McGill University, 1989. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=55658.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Nonlinear water waves"

1

Henry, David, Konstantinos Kalimeris, Emilian I. Părău, Jean-Marc Vanden-Broeck y Erik Wahlén, eds. Nonlinear Water Waves. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-33536-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Horikawa, Kiyoshi y Hajime Maruo, eds. Nonlinear Water Waves. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Constantin, Adrian, Joachim Escher, Robin Stanley Johnson y Gabriele Villari. Nonlinear Water Waves. Editado por Adrian Constantin. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-31462-4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Debnath, Lokenath. Nonlinear water waves. Boston: Academic Press, 1994.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Debnath, Lokenath. Nonlinear water waves. Boston: Academic Press, 1994.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Oskar, Mahrenholtz y Markiewicz M, eds. Nonlinear water wave interaction. Southampton: WIT Press, 1999.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ma, Qingwei. Advances in numerical simulation of nonlinear water waves. Hackensack, NJ: World Scientific, 2010.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Kiyoshi, Horikawa, Maruo H. 1922-, Internation Union of Theoretical and Applied Mechanics. y Symposium on Non-linear Water Waves (1987 : Tokyo, Japan), eds. Nonlinear water waves: IUTAM Symposium, Tokyo/Japan, August 25-28, 1987. Berlin: Springer-Verlag, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Nonlinear water waves with applications to wave-current interactions and tsunamis. Philadelphia: Society for Industrial and Applied Mathematics, 2011.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

John, Grue, Gjevik Bjørn y Weber Jan Erik, eds. Waves and nonlinear processes in hydrodynamics. Dordrecht: Kluwer Academic Publishers, 1996.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Nonlinear water waves"

1

Mei, Chiang C. "Nonlinear Effects in Water Wave Diffraction". En Nonlinear Water Waves, 3–15. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Yasuda, T., T. Mishima y Y. Tsuchiya. "Energy Distribution of Shallow Water Swell under the Maximum Probability Condition". En Nonlinear Water Waves, 93–100. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Shemer, L., E. Kit y T. Miloh. "Experimental and Numerical Study of Long-time Evolution of Standing Waves in a Rectangular Tank". En Nonlinear Water Waves, 103–10. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_11.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Bryant, Peter J. "Nonlinear Waves in Circular Basins". En Nonlinear Water Waves, 111–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_12.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Nishimura, H. y S. Takewaka. "Numerical Analysis of Wave Motion Using the Lagrangian Description". En Nonlinear Water Waves, 119–26. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Jami, A. y C. Pot. "Transient Approaches of Non-linearities in Naval Hydrodynamics". En Nonlinear Water Waves, 127–34. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_14.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Chen, Y. Y., C. P. Tsai y H. H. Hwung. "The Theoretical Studies on Nonlinear Standing Waves". En Nonlinear Water Waves, 135–42. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_15.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Mori, Kazu-hiro. "Critical Condition for the Appearance of Steady Breakers on 2-dimensional Wave Generated by Submerged Foil". En Nonlinear Water Waves, 145–50. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_16.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Banner, Michael L. "Surging Characteristics of Spilling Zones of Quasi-steady Breaking Water Waves". En Nonlinear Water Waves, 151–58. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Tulin, M. P. y R. Cointe. "Steady and Unsteady Spilling Breakers: Theory". En Nonlinear Water Waves, 159–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/978-3-642-83331-1_18.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Nonlinear water waves"

1

Osborne, Alfred R. "Nonlinear Fourier Analysis for Shallow Water Waves". En ASME 2021 40th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/omae2021-63933.

Texto completo
Resumen
Abstract I consider nonlinear wave motion in shallow water as governed by the KP equation plus perturbations. I have previously shown that broad band, multiply periodic solutions of the KP equation are governed by quasiperiodic Fourier series [Osborne, OMAE 2020]. In the present paper I give a new procedure for extending this analysis to the KP equation plus shallow water Hamiltonian perturbations. We therefore have the remarkable result that a complex class of nonlinear shallow water wave equations has solutions governed by quasiperiodic Fourier series that are a linear superposition of sine waves. Such a formulation is important because it was previously thought that solving nonlinear wave equations by a linear superposition principle was impossible. The construction of these linear superpositions in shallow water in an engineering context is the goal of this paper. Furthermore, I address the nonlinear Fourier analysis of experimental data described by shallow water physics. The wave fields dealt with here are fully two-dimensional and essentially consist of the linear superposition of generalized cnoidal waves, which nonlinearly interact with one another. This includes the class of soliton solutions and their associated Mach stems, both of which are important for engineering applications. The newly discovered phenomenon of “fossil breathers” is also characterized in the formulation. I also discuss the exact construction of Morison equation forces on cylindrical piles in terms of quasiperiodic Fourier series.
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Matijošius, A., R. Piskarskas, A. Dubietis, J. Trull, A. Varanavičius, A. Piskarskas y P. Di Trapani. "Space-time dynamics of ultrashort light pulses in water". En Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/nlgw.2004.tud2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Peregrine, D. H., D. Skyner, M. Stiassnie y N. Dodd. "Nonlinear Effects on Focussed Water Waves". En 21st International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1989. http://dx.doi.org/10.1061/9780872626874.055.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

EDWARDS, K. L., J. M. KAIHATU y J. VEERAMONY. "DISSIPATION OF NONLINEAR SHALLOW WATER WAVES". En Proceedings of the 29th International Conference. World Scientific Publishing Company, 2005. http://dx.doi.org/10.1142/9789812701916_0036.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Yan, S., Q. W. Ma, Jinghua Wang y Juntao Zhou. "Self-Adaptive Wave Absorbing Technique for Nonlinear Shallow Water Waves". En ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54475.

Texto completo
Resumen
A key challenge in long-duration modelling of ocean waves or wave-structure interactions in numerical wave tanks (NWT) is how to effectively absorb undesirable waves on the boundaries of the wave tanks. The self-adaptive wavemaker theory is one technique developed for this purpose. However, it was derived based on the linear wavemaker theory, in which the free surface elevation and the motion of the wavemaker are assumed to be approximately zero. Numerical investigations using the fully nonlinear potential theory based Quasi Arbitrary Lagrangian Eulerian Finite Element Method (QALE-FEM) suggested that its efficiency is relatively lower when dealing with nonlinear waves, especially for shallow water waves due to three typical issues associated with the wave nonlinearity including (1) significant wavemaker motion for extreme waves; (2) the mean wave elevation (i.e. the component corresponding to zero frequency), leading to a constant velocity component, thus a significant slow shift of the wavemaker; (3) the nonlinear components, especially high-order harmonics, may significantly influence the wavemaker transfer functions. The paper presents a new approach to numerically implement the existing self-adaptive wavemaker theory and focuses on its application on the open boundary, where all incident waves are expected to be fully absorbed. The approach is implemented by the NWT based on the QALE-FEM method. A systematic numerical investigation on uni-directional waves is carried out, following the corresponding validation through comparing the numerical prediction with experimental data for highly nonlinear shallow water waves.
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Leitão, J. M. Chambel y J. L. M. Fernandes. "A Model to Propagate Nonlinear Water Waves". En 22nd International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1991. http://dx.doi.org/10.1061/9780872627765.055.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Vanhille, Christian, Cleofé Campos-Pozuelo, Bengt Enflo, Claes M. Hedberg y Leif Kari. "On The Behavior Of Nonlinear Ultrasonic Waves In Water-air Mixtures". En NONLINEAR ACOUSTICS - FUNDAMENTALS AND APPLICATIONS: 18th International Symposium on Nonlinear Acoustics - ISNA 18. AIP, 2008. http://dx.doi.org/10.1063/1.2956305.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Wabnitz, S., C. Finot, J. Fatome y G. Millot. "Shallow water rogue waves in nonlinear optical fibers". En 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC. IEEE, 2013. http://dx.doi.org/10.1109/cleoe-iqec.2013.6801966.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Kofoed-Hansen, Henrik y Jørgen H. Rasmussen. "Stochastic Modelling of Nonlinear Waves in Shallow Water". En 26th International Conference on Coastal Engineering. Reston, VA: American Society of Civil Engineers, 1999. http://dx.doi.org/10.1061/9780784404119.008.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Vengayil, Padmaraj y James T. Kirby. "Shoaling and Reflection of Nonlinear Shallow Water Waves". En 20th International Conference on Coastal Engineering. New York, NY: American Society of Civil Engineers, 1987. http://dx.doi.org/10.1061/9780872626003.060.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Nonlinear water waves"

1

Saffman, P. G. Research in Nonlinear Water Waves. Fort Belvoir, VA: Defense Technical Information Center, diciembre de 1989. http://dx.doi.org/10.21236/ada216996.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Saffman, P. G. Research in Nonlinear Water Waves. Fort Belvoir, VA: Defense Technical Information Center, julio de 1990. http://dx.doi.org/10.21236/ada224065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Kirby, James T. Nonlinear, Dispersive Long Waves in Water of Variable Depth. Fort Belvoir, VA: Defense Technical Information Center, abril de 1996. http://dx.doi.org/10.21236/ada308118.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Ertekin, R. C. y Jang W. Kim. The Study of the Spatial Coherence of Surface Waves by the Nonlinear Green-Naghdi Model in Deep Water. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2000. http://dx.doi.org/10.21236/ada609930.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ertekin, R. C. y Jang W. Kim. The Study of the Spatial Coherence of Surface Waves by the Nonlinear Green-Naghdi Model in Deep Water. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 1999. http://dx.doi.org/10.21236/ada629882.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Holthuijsen, L. H. y G. S. Stelling. A Spectral Shallow-water Wave Model with Nonlinear Energy- and Phase-evolution. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2010. http://dx.doi.org/10.21236/ada542576.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Holthuijsen, L. H. y G. S. Stelling. A Spectral Shallow-Water Wave Model With Nonlinear Energy- and Phase-Evolution. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2007. http://dx.doi.org/10.21236/ada573391.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía