Literatura académica sobre el tema "Nonlinear time warping"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nonlinear time warping".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Nonlinear time warping"
Hale, Dave. "Dynamic warping of seismic images". GEOPHYSICS 78, n.º 2 (1 de marzo de 2013): S105—S115. http://dx.doi.org/10.1190/geo2012-0327.1.
Texto completoGao, Wenlei y Mauricio D. Sacchi. "Multicomponent seismic data registration by nonlinear optimization". GEOPHYSICS 83, n.º 1 (1 de enero de 2018): V1—V10. http://dx.doi.org/10.1190/geo2017-0105.1.
Texto completoSon, Nguyen Thanh. "Pattern matching under dynamic time warping for time series prediction". Tạp chí Khoa học 15, n.º 3 (20 de septiembre de 2019): 148. http://dx.doi.org/10.54607/hcmue.js.15.3.146(2018).
Texto completoXu, Qingyu, Hongju Chen, Shaoqing Ye, Yongming Zeng, Hongmei Lu y Zhimin Zhang. "Standardization of Raman spectra using variable penalty dynamic time warping". Analytical Methods 13, n.º 30 (2021): 3414–23. http://dx.doi.org/10.1039/d1ay00541c.
Texto completoKwong, S., Q. H. He, K. F. Man, K. S. Tang y C. W. Chau. "Parallel Genetic-Based Hybrid Pattern Matching Algorithm for Isolated Word Recognition". International Journal of Pattern Recognition and Artificial Intelligence 12, n.º 05 (agosto de 1998): 573–94. http://dx.doi.org/10.1142/s0218001498000348.
Texto completoZhang, Yuxin, Yoshikazu Miyanaga y Constantin Siriteanu. "Robust Speech Recognition with Dynamic Time Warping and Nonlinear Median Filter". Journal of Signal Processing 16, n.º 2 (2012): 147–57. http://dx.doi.org/10.2299/jsp.16.147.
Texto completoChelidze, D. y J. P. Cusumano. "Phase space warping: nonlinear time-series analysis for slowly drifting systems". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 364, n.º 1846 (28 de julio de 2006): 2495–513. http://dx.doi.org/10.1098/rsta.2006.1837.
Texto completoStoykov, S. y S. Margenov. "Nonlinear Vibrations of 3D Laminated Composite Beams". Mathematical Problems in Engineering 2014 (2014): 1–14. http://dx.doi.org/10.1155/2014/892782.
Texto completoChen, Shuangquan, Song Jin, Xiang-Yang Li y Wuyang Yang. "Nonstretching normal-moveout correction using a dynamic time warping algorithm". GEOPHYSICS 83, n.º 1 (1 de enero de 2018): V27—V37. http://dx.doi.org/10.1190/geo2016-0673.1.
Texto completoChelidze, David y Ming Liu. "Reconstructing slow-time dynamics from fast-time measurements". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 366, n.º 1866 (18 de octubre de 2007): 729–45. http://dx.doi.org/10.1098/rsta.2007.2124.
Texto completoTesis sobre el tema "Nonlinear time warping"
Khacef, Yacine. "Surveillance avancée du trafic routier par détection acoustique distribuée et apprentissage profond". Electronic Thesis or Diss., Université Côte d'Azur, 2024. http://www.theses.fr/2024COAZ5070.
Texto completoUrban traffic management poses a significant challenge for cities worldwide, intensified by the growing number of vehicles on road infrastructures. Traditional methods, such as cameras and loop detectors, are often suboptimal due to their high deployment and maintenance costs, limited sensing resolution, and privacy concerns. Recently, Distributed Acoustic Sensing (DAS) technology has emerged as a promising solution for traffic monitoring. By transforming standard fiber-optic telecommunication cables into an array of vibration sensors, DAS captures vehicle-induced subsurface deformation with high spatio-temporal resolution, providing a cost-effective and privacy-preserving alternative.In this thesis, we propose several models and frameworks for comprehensive traffic monitoring using DAS technology, focusing on four key aspects: vehicle detection, speed estimation, counting, and classification. First, we introduce a self-supervised DAS data alignment model that temporally aligns the recorded DAS data across multiple measurement points, enabling the extraction of the traffic information. Our model integrates a deep learning module with a non-uniform time warping block, making it capable of handling challenging traffic conditions and accurately aligning DAS data.Next, we present a vehicle detection and speed estimation framework built on the alignment model. Vehicle detection is formulated within the Generalized Likelihood Ratio Test (GLRT) framework, allowing for reliable detection and localization of vehicles. Speed estimation is achieved over the detected vehicles using the warps from the alignment model, and the results are validated against dedicated sensors. Our method achieves a mean error of less than kmph{3}, outperforming traditional time series alignment methods like Dynamic Time Warping (DTW) by nearly 80%. Furthermore, our model's computing time is 16 times faster than DTW, enabling real-time performance.Lastly, we introduce new vehicle counting and classification methods that leverage the DAS technology. We present a first solution, based solely on vehicle detection results, which is effective for truck counting but shows limitations in cars counting under high-traffic conditions. To address these limitations, we develop a second approach for vehicle counting using a supervised deep learning model trained on a specific road section, using the vehicle counting results of the first method and low-time-resolution labels from dedicated sensors. Through an optimal transport-based feature mapping technique, we extend the model to other road segments, demonstrating its scalability and adaptability. Using the first truck counting method along with the deep learning-based vehicle counting model results in a comprehensive vehicle counting and classification solution.Overall, this thesis presents a robust and scalable framework for road traffic monitoring using DAS technology, delivering both high accuracy and real-time performance. The framework paves the way for extracting a wide range of other crucial traffic information, such as accident detection. Moreover, this approach can be generalized to various road configurations and extended to other transportation modes, such as tramways and trains, demonstrating its broader applicability
Capítulos de libros sobre el tema "Nonlinear time warping"
"Signal recognition using a dynamic time warping neural network". En World Congress of Nonlinear Analysts '92, 3717–22. De Gruyter, 1996. http://dx.doi.org/10.1515/9783110883237.3717.
Texto completoActas de conferencias sobre el tema "Nonlinear time warping"
Yuxin, Zhang y Yoshikazu Miyanaga. "An improved dynamic time warping algorithm employing nonlinear median filtering". En 2011 11th International Symposium on Communications and Information Technologies (ISCIT). IEEE, 2011. http://dx.doi.org/10.1109/iscit.2011.6089967.
Texto completoNguyen, Son Hai y David Chelidze. "Characteristic Lengths and Distances: Fast and Robust Features for Nonlinear Time Series". En ASME 2012 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/detc2012-71281.
Texto completoBernard, Cindy, Cornel Ioana, Irena Orovic y Srdjan Stankovic. "Analysis of underwater signals with nonlinear time-frequency structures using warping-based compressive sensing algorithm". En OCEANS 2015 - MTS/IEEE Washington. IEEE, 2015. http://dx.doi.org/10.23919/oceans.2015.7401942.
Texto completoBowden, Anton E., Richard D. Rabbitt y Jeffrey A. Weiss. "Warping Template Finite Element Models Into Alignment With Subject Specific Image Data". En ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0144.
Texto completoSegala, David B., David Chelidze, Deanna Gates y Jonathan Dingwell. "Linear and Nonlinear Smooth Orthogonal Decomposition to Reconstruct Local Fatigue Dynamics: A Comparison". En ASME 2010 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2010. http://dx.doi.org/10.1115/detc2010-28852.
Texto completoCoaquira, Júlio C., Paulo B. Gonçalves y Eulher C. Carvalho. "Dynamic Instability of Cantilever Beams With Open Cross-Section". En ASME 2016 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/imece2016-65674.
Texto completoMahgoub, Mohamed Abdelghany, Yasir Bashir y Andy Anderson Berry. "Machine Learning Applications of 4D Seismic in Carbonate: Case Study Offshore Abu Dhabi". En ADIPEC. SPE, 2022. http://dx.doi.org/10.2118/211705-ms.
Texto completoTanaka, Yoshiteru, Yutaka Hashizume, Hiroaki Ogawa, Akira Tatsumi y Masahiko Fujikubo. "Analysis Method of Ultimate Strength of Ship Hull Girder Under Combined Loads: Application to an Existing Container Ship". En ASME 2016 35th International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/omae2016-54402.
Texto completo