Literatura académica sobre el tema "Nonlinear systems of equations"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nonlinear systems of equations".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Nonlinear systems of equations"

1

Jan, Jiří. "Recursive algorithms for solving systems of nonlinear equations." Applications of Mathematics 34, no. 1 (1989): 33–45. http://dx.doi.org/10.21136/am.1989.104332.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Jahedi, Sana, Timothy Sauer, and James A. Yorke. "Structured Systems of Nonlinear Equations." SIAM Journal on Applied Mathematics 83, no. 4 (2023): 1696–716. http://dx.doi.org/10.1137/22m1529178.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Friedman, Avner, and Jindrich Necas. "Systems of nonlinear wave equations with nonlinear viscosity." Pacific Journal of Mathematics 135, no. 1 (1988): 29–55. http://dx.doi.org/10.2140/pjm.1988.135.29.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tamizhmani, K. M., J. Satsuma, B. Grammaticos, and A. Ramani. "Nonlinear integrodifferential equations as discrete systems." Inverse Problems 15, no. 3 (1999): 787–91. http://dx.doi.org/10.1088/0266-5611/15/3/310.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Ramos, J. I. "Nonlinear diferrential equations and dynamical systems." Applied Mathematical Modelling 16, no. 2 (1992): 108. http://dx.doi.org/10.1016/0307-904x(92)90092-h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Boichuk, O. A., and I. A. Golovats’ka. "Weakly Nonlinear Systems of Integrodifferential Equations." Journal of Mathematical Sciences 201, no. 3 (2014): 288–95. http://dx.doi.org/10.1007/s10958-014-1989-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

van der Laan, Gerard, Dolf Talman, and Zaifu Yang. "Solving discrete systems of nonlinear equations." European Journal of Operational Research 214, no. 3 (2011): 493–500. http://dx.doi.org/10.1016/j.ejor.2011.05.024.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Batt, Jürgen, and Carlo Cercignani. "Nonlinear equations in many-particle systems." Transport Theory and Statistical Physics 26, no. 7 (1997): 827–38. http://dx.doi.org/10.1080/00411459708224424.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Adomian, G. "Systems of nonlinear partial differential equations." Journal of Mathematical Analysis and Applications 115, no. 1 (1986): 235–38. http://dx.doi.org/10.1016/0022-247x(86)90038-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Fife, Paul C. "Systems of nonlinear partial differential equations." Mathematical Biosciences 79, no. 1 (1986): 119–20. http://dx.doi.org/10.1016/0025-5564(86)90022-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Tesis sobre el tema "Nonlinear systems of equations"

1

Hadad, Yaron. "Integrable Nonlinear Relativistic Equations." Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/293490.

Texto completo
Resumen
This work focuses on three nonlinear relativistic equations: the symmetric Chiral field equation, Einstein's field equation for metrics with two commuting Killing vectors and Einstein's field equation for diagonal metrics that depend on three variables. The symmetric Chiral field equation is studied using the Zakharov-Mikhailov transform, with which its infinitely many local conservation laws are derived and its solitons on diagonal backgrounds are studied. It is also proven that it is equivalent to a novel equation that poses a fascinating similarity to the Sinh-Gordon equation. For the 1+1 E
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Zerihun, Tadesse G. "Nonlinear Techniques for Stochastic Systems of Differential Equations." Scholar Commons, 2013. http://scholarcommons.usf.edu/etd/4970.

Texto completo
Resumen
Two of the most well-known nonlinear methods for investigating nonlinear dynamic processes in sciences and engineering are nonlinear variation of constants parameters and comparison method. Knowing the existence of solution process, these methods provide a very powerful tools for investigating variety of problems, for example, qualitative and quantitative properties of solutions, finding error estimates between solution processes of stochastic system and the corresponding nominal system, and inputs for the designing engineering and industrial problems. The aim of this work is to systematical
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Jaschke, Leonhard. "Preconditioned Arnoldi methods for systems of nonlinear equations /." Paris (121 Av. des Champs-Élysées, 75008) : Wiku, 2004. http://catalogue.bnf.fr/ark:/12148/cb391991990.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Foley, Dawn Christine. "Applications of State space realization of nonlinear input/output difference equations." Thesis, Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/16818.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Van, der Walt Jan Harm. "Generalized solutions of systems of nonlinear partial differential equations." Thesis, Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-05242009-122628.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Reichelt, Sina. "Two-scale homogenization of systems of nonlinear parabolic equations." Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät, 2015. http://dx.doi.org/10.18452/17385.

Texto completo
Resumen
Ziel dieser Arbeit ist es zwei verschiedene Klassen von Systemen nichtlinearer parabolischer Gleichungen zu homogenisieren, und zwar Reaktions-Diffusions-Systeme mit verschiedenen Diffusionslängenskalen und Gleichungen vom Typ Cahn-Hilliard. Wir betrachten parabolische Gleichungen mit periodischen Koeffizienten, wobei die Periode dem Verhältnis der charakteristischen mikroskopischen zu der makroskopische Längenskala entspricht. Unser Ziel ist es, effektive Gleichungen rigoros herzuleiten, um die betrachteten Systeme besser zu verstehen und den Simulationsaufwand zu minimieren. Wir suchen a
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Alam, Md Shafiful. "Iterative Methods to Solve Systems of Nonlinear Algebraic Equations." TopSCHOLAR®, 2018. https://digitalcommons.wku.edu/theses/2305.

Texto completo
Resumen
Iterative methods have been a very important area of study in numerical analysis since the inception of computational science. Their use ranges from solving algebraic equations to systems of differential equations and many more. In this thesis, we discuss several iterative methods, however our main focus is Newton's method. We present a detailed study of Newton's method, its order of convergence and the asymptotic error constant when solving problems of various types as well as analyze several pitfalls, which can affect convergence. We also pose some necessary and sufficient conditions on the
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Handel, Andreas. "Limits of Localized Control in Extended Nonlinear Systems." Diss., Georgia Institute of Technology, 2004. http://hdl.handle.net/1853/5025.

Texto completo
Resumen
We investigate the limits of localized linear control in spatially extended, nonlinear systems. Spatially extended, nonlinear systems can be found in virtually every field of engineering and science. An important category of such systems are fluid flows. Fluid flows play an important role in many commercial applications, for instance in the chemical, pharmaceutical and food-processing industries. Other important fluid flows include air- or water flows around cars, planes or ships. In all these systems, it is highly desirable to control the flow of the respective fluid. For instance
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Twiton, Michael. "Analysis of Singular Solutions of Certain Painlevé Equations." Thesis, The University of Sydney, 2018. http://hdl.handle.net/2123/18206.

Texto completo
Resumen
The six Painlevé equations can be described as the boundary between the non- integrable- and the trivially integrable-systems. Ever since their discovery they have found numerous applications in mathematics and physics. The solutions of the Painlevé equations are, in most cases, highly transcendental and hence cannot be expressed in closed form. Asymptotic methods do better, and can establish the behaviour of some of the solutions of the Painlevé equations in the neighbourhood of a singularity, such as the point at infinity. Although the quantitative nature of these neighbourhoods is not initi
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Liu, Weian, Yin Yang, and Gang Lu. "Viscosity solutions of fully nonlinear parabolic systems." Universität Potsdam, 2002. http://opus.kobv.de/ubp/volltexte/2008/2621/.

Texto completo
Resumen
In this paper, we discuss the viscosity solutions of the weakly coupled systems of fully nonlinear second order degenerate parabolic equations and their Cauchy-Dirichlet problem. We prove the existence, uniqueness and continuity of viscosity solution by combining Perron's method with the technique of coupled solutions. The results here generalize those in [2] and [3].
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Libros sobre el tema "Nonlinear systems of equations"

1

Drazin, P. G. Nonlinear systems. Cambridge University Press, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Drazin, P. G. Nonlinear systems. Cambridge University Press, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Liu, Wu-Ming, and Emmanuel Kengne. Schrödinger Equations in Nonlinear Systems. Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-6581-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Adomian, G. Nonlinear stochastic operator equations. Academic Press, 1986.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Verhulst, F. Nonlinear differential equations and dynamical systems. Springer-Verlag, 1990.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Verhulst, Ferdinand. Nonlinear Differential Equations and Dynamical Systems. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-97149-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Verhulst, Ferdinand. Nonlinear Differential Equations and Dynamical Systems. Springer Berlin Heidelberg, 1996. http://dx.doi.org/10.1007/978-3-642-61453-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Leung, Anthony W. Systems of Nonlinear Partial Differential Equations. Springer Netherlands, 1989. http://dx.doi.org/10.1007/978-94-015-3937-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Makhankov, Vladimir G., and Oktay K. Pashaev, eds. Nonlinear Evolution Equations and Dynamical Systems. Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-76172-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Carillo, Sandra, and Orlando Ragnisco, eds. Nonlinear Evolution Equations and Dynamical Systems. Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-84039-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Más fuentes

Capítulos de libros sobre el tema "Nonlinear systems of equations"

1

Gilbert, Robert P., George C. Hsiao, and Robert J. Ronkese. "Nonlinear Autonomous Systems." In Differential Equations, 2nd ed. Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003175643-9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Beffa, Federico. "Convolution Equations." In Weakly Nonlinear Systems. Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-40681-2_7.

Texto completo
Resumen
AbstractThe objective of this chapter is to show that the solution of ordinary differential equations, if based on distributions as opposed to functions, can be obtained by (mostly) algebraic methods. These methods are rigorous forms of the so-called Heaviside’s operational or symbolic calculus. The close relationship to the integral transforms that convert convolution into the ordinary multiplication is also shown. With this chapter we stop using uppercase letters such as T to denote distributions. Instead, we start using lowercase letters such as the ones typically used to denote functions,
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Marchuk, Guri I. "Nonlinear Equations." In Adjoint Equations and Analysis of Complex Systems. Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-017-0621-6_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Pommaret, J. F. "Nonlinear Systems." In Partial Differential Equations and Group Theory. Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-017-2539-2_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Sauvigny, Friedrich. "Nonlinear Elliptic Systems." In Partial Differential Equations 2. Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2984-4_6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Goodwine, Bill. "Introduction to Nonlinear Systems." In Engineering Differential Equations. Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7919-3_13.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Klein, Christian, and Jean-Claude Saut. "Davey–Stewartson and Related Systems." In Nonlinear Dispersive Equations. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-91427-1_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Shaikhet, Leonid. "Nonlinear Systems." In Lyapunov Functionals and Stability of Stochastic Difference Equations. Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-685-6_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Stoyan, Gisbert, and Agnes Baran. "Nonlinear Equations and Systems." In Compact Textbooks in Mathematics. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-44660-8_7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Andrei, Neculai. "Nonlinear Systems of Equations." In Nonlinear Optimization Applications Using the GAMS Technology. Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-6797-7_4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Nonlinear systems of equations"

1

Tselishcheva, Anastasiia A., and Konstantin K. Semenov. "Metrological Approach to Solve Nonlinear Equations and Systems of Nonlinear Equations." In 2021 XXIV International Conference on Soft Computing and Measurements (SCM). IEEE, 2021. http://dx.doi.org/10.1109/scm52931.2021.9507196.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Vladimirov, Andrei G., Vladislav Y. Toronov, and Vladimir L. Derbov. "Complex Lorenz equations." In Nonlinear Dynamics of Laser and Optical Systems, edited by Valery V. Tuchin. SPIE, 1997. http://dx.doi.org/10.1117/12.276193.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Etrich, C., Paul Mandel, and Kenju Otsuka. "Laser rate equations with phase-sensitive interactions." In Nonlinear Dynamics in Optical Systems. Optica Publishing Group, 1992. http://dx.doi.org/10.1364/nldos.1992.tuc7.

Texto completo
Resumen
We derive the following set of equations describing a two-mode semiconductor laser for the case of a Fabry-Perot configuration, taking into account the holes burned into the amplifying medium by the standing field pattern and phase-sensitive interactions: (1) where κ = κ2/κ1 is the ratio of the decay rates of the electric fields E1 and E2. It is fixed to be larger than unity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Arkhipova, Arina. "New a priori estimates for nondiagonal strongly nonlinear parabolic systems." In Parabolic and Navier–Stokes equations. Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc81-0-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Makhankov, Vladimir, Igor Puzynin, and Oktay Pashaev. "Nonlinear Evolution Equations and Dynamical Systems." In 8th International Workshop (NEEDS '92). WORLD SCIENTIFIC, 1993. http://dx.doi.org/10.1142/9789814535601.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Boiti, M., L. Martina, and F. Pempinelli. "Nonlinear Evolution Equations and Dynamical Systems." In Workshop (NEEDS '91). WORLD SCIENTIFIC, 1992. http://dx.doi.org/10.1142/9789814538114.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ta-Tsien, Li. "Nonlinear Evolution Equations and Infinite-Dimensional Dynamical Systems." In Conference on Nonlinear Evolution Equations and Infinite-Dimensional Dynamical Systems. WORLD SCIENTIFIC, 1997. http://dx.doi.org/10.1142/9789814530019.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Glad, T., and J. Sjoberg. "Hamilton-Jacobi equations for nonlinear descriptor systems." In 2006 American Control Conference. IEEE, 2006. http://dx.doi.org/10.1109/acc.2006.1655494.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Jafari, Raheleh, and Wen Yu. "Uncertainty Nonlinear Systems Control with Fuzzy Equations." In 2015 IEEE International Conference on Systems, Man, and Cybernetics (SMC). IEEE, 2015. http://dx.doi.org/10.1109/smc.2015.502.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Jafari, Raheleh, and Wen Yu. "Uncertainty Nonlinear Systems Modeling with Fuzzy Equations." In 2015 IEEE International Conference on Information Reuse and Integration (IRI). IEEE, 2015. http://dx.doi.org/10.1109/iri.2015.36.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Informes sobre el tema "Nonlinear systems of equations"

1

Seidman, Thomas I. Nonlinear Systems of Partial Differential Equations. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada217581.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Hale, Jack, Constantine M. Dafermos, John Mallet-Paret, Panagiotis E. Souganidis, and Walter Strauss. Dynamical Systems and Nonlinear Partial Differential Equations. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada255356.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Dafermos, Constantine M., John Mallet-Paret, Panagiotis E. Souganidis, and Walter Strauss. Dynamical Systems and Nonlinear Partial Differential Equations. Defense Technical Information Center, 1993. http://dx.doi.org/10.21236/ada271514.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Shearer, Michael. Systems of Nonlinear Hyperbolic Partial Differential Equations. Defense Technical Information Center, 1997. http://dx.doi.org/10.21236/ada344449.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Schnabel, Robert B., and Paul D. Frank. Solving Systems of Nonlinear Equations by Tensor Methods. Defense Technical Information Center, 1986. http://dx.doi.org/10.21236/ada169927.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Bouaricha, A., and R. B. Schnabel. Tensor methods for large sparse systems of nonlinear equations. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/434848.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Zhang, Xiaodong, Richard H. Byrd, and Robert B. Schnabel. Parallel Methods for Solving Nonlinear Block Bordered Systems of Equations. Defense Technical Information Center, 1989. http://dx.doi.org/10.21236/ada217062.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Bader, Brett William. Tensor-Krylov methods for solving large-scale systems of nonlinear equations. Office of Scientific and Technical Information (OSTI), 2004. http://dx.doi.org/10.2172/919158.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Li, Guangye. The Secant/Finite Difference Algorithm for Solving Sparse Nonlinear Systems of Equations. Defense Technical Information Center, 1986. http://dx.doi.org/10.21236/ada453093.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Bouaricha, A., and R. B. Schnabel. TENSOLVE: A software package for solving systems of nonlinear equations and nonlinear least squares problems using tensor methods. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/435303.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!