Literatura académica sobre el tema "Nonlinear interfaces"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nonlinear interfaces".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Nonlinear interfaces"
Savotchenko, S. E. "Nonlinear surface waves propagating along the composite waveguide consisting of self-focusing slab between defocusing media separated by interfaces with nonlinear response". Journal of Nonlinear Optical Physics & Materials 28, n.º 04 (diciembre de 2019): 1950039. http://dx.doi.org/10.1142/s0218863519500395.
Texto completoNASALSKI, W. y D. BURAK. "GAUSSIAN BEAM NONSPECULAR REFLECTION AT A NONLINEAR DEFOCUSING INTERFACE". Journal of Nonlinear Optical Physics & Materials 04, n.º 04 (octubre de 1995): 929–42. http://dx.doi.org/10.1142/s0218863595000422.
Texto completoVASSILIEV, O. N. y M. G. COTTAM. "OPTICALLY NONLINEAR S-POLARIZED ELECTROMAGNETIC WAVES IN MULTILAYERED SYMMETRIC DIELECTRICS". Surface Review and Letters 07, n.º 01n02 (febrero de 2000): 89–102. http://dx.doi.org/10.1142/s0218625x00000129.
Texto completoSavotchenko, S. E. "Nonlinear surface waves propagating along composite waveguide consisting of nonlinear defocusing media separated by interfaces with nonlinear response". Journal of Nonlinear Optical Physics & Materials 29, n.º 01n02 (marzo de 2020): 2050002. http://dx.doi.org/10.1142/s0218863520500022.
Texto completoNouira, Dorra, Davide Tonazzi, Anissa Meziane, Laurent Baillet y Francesco Massi. "Numerical and Experimental Analysis of Nonlinear Vibrational Response due to Pressure-Dependent Interface Stiffness". Lubricants 8, n.º 7 (10 de julio de 2020): 73. http://dx.doi.org/10.3390/lubricants8070073.
Texto completoLiang, Yu, Zhigang Zhai, Juchun Ding y Xisheng Luo. "Richtmyer–Meshkov instability on a quasi-single-mode interface". Journal of Fluid Mechanics 872 (13 de junio de 2019): 729–51. http://dx.doi.org/10.1017/jfm.2019.416.
Texto completoСавотченко, С. Е. "Нелинейные интерфейсные волны в трехслойной оптической структуре с отличающимися характеристиками слоев и внутренней самофокусировкой". Журнал технической физики 127, n.º 7 (2019): 159. http://dx.doi.org/10.21883/os.2019.07.47944.231-18.
Texto completoShrivastava, Shamit, Kevin H. Kang y Matthias F. Schneider. "Collision and annihilation of nonlinear sound waves and action potentials in interfaces". Journal of The Royal Society Interface 15, n.º 143 (junio de 2018): 20170803. http://dx.doi.org/10.1098/rsif.2017.0803.
Texto completoSánchez-Curto, Julio, Pedro Chamorro-Posada y Graham S. McDonald. "Dark solitons at nonlinear interfaces". Optics Letters 35, n.º 9 (22 de abril de 2010): 1347. http://dx.doi.org/10.1364/ol.35.001347.
Texto completoSánchez-Curto, J., P. Chamorro-Posada y G. S. McDonald. "Helmholtz solitons at nonlinear interfaces". Optics Letters 32, n.º 9 (3 de abril de 2007): 1126. http://dx.doi.org/10.1364/ol.32.001126.
Texto completoTesis sobre el tema "Nonlinear interfaces"
Poznic, Milan. "Nonlinear Interaction Between Ultrasonic Waves and Cracks and Interfaces". Doctoral thesis, KTH, MWL Marcus Wallenberg Laboratoriet, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4604.
Texto completoQC 20100906
Poznić, Milan. "Interaction between ultrasonic waves and nonlinear cracks and interfaces /". Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4087.
Texto completoPoznić, Milan. "Nonlinear interaction between ultrasonic waves and cracks and interfaces /". Stockholm : Farkost- och flyg, Kungliga Tekniska högskolan, 2008. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4604.
Texto completoShelford, Leigh. "Ultrafast nonlinear optical studies of multilayered thin films and interfaces". Thesis, University of Exeter, 2009. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506859.
Texto completoVan, Wyck Neal Edward. "MULTIPHOTON SPECTROSCOPY OF THIN FILMS AND SURFACES (NONLINEAR, WAVEGUIDES, INTERFACES)". Thesis, The University of Arizona, 1985. http://hdl.handle.net/10150/291294.
Texto completoOjaghlou, Neda. "Adhesion at Solid/Liquid Interfaces". VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6079.
Texto completoLombardi, Giulia. "Unified nonlinear electrical interfaces for hybrid piezoelectric-electromagnetic small-scale harvesting systems". Thesis, Lyon, 2020. http://www.theses.fr/2020LYSEI101.
Texto completoIn this research work, electronic nonlinear interfaces for hybrid energy harvesting systems combining piezoelectric and electromagnetic transducers are presented. Such systems have received great attention due to their ability to detect mechanical vibrations and convert them into electrical energy sufficient to power low-power sensors. In order to supply these microelectronic devices the generated sinusoidal signal needs to be rectified into a constant DC voltage. In other words, once the energy is converted, a proper and smart extraction of such energy needs to be implemented with a dedicated unit. The proposed nonlinear hybrid interfaces developed in this work, aimed at incorporating as much as electroactive parts as possible in the circuit, not only increase the final output power of the involved transducers but also provide a solution for obtaining a common optimal load value, despite dealing with elements singularly presenting different working principles and values of optimal load, without the use of additional load adaptation stages. A first solution is derived from the previously developed SSHI (Synchronized Switch Harvesting on Inductor) and based on the Synchronized Switching technique. This method aims at replacing the passive inductor in the SSHI interface with an active electromagnetic system, leading to an all-active microgenerators interface and increasing the final output power. A second solution is derived from a combination of the SECE (Synchronous Electric Charge Extraction) and SMFE (Synchronous Magnetic Flux Extraction) techniques. Its main principle consists of transferring the energy from the piezoelectric to the electromagnetic transducer and then extracting the boosted energy from the electromagnetic system. The strategy of including as much as electroactive parts within the same electrical interface open many different possibilities of interfacing more than one electroactive system, constituting hybrid energy harvesters, without including extra circuit stages, thus maintaining a relative simplicity without high power losses
Costard, Rene. "Ultrafast dynamics of phospholipid-water interfaces studied by nonlinear time-resolved vibrational spectroscopy". Doctoral thesis, Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Fakultät I, 2014. http://dx.doi.org/10.18452/16955.
Texto completoCharged phosphate groups are the major hydration sites of biomolecules such as phospholipids and DNA. Hydration shells play a key role in the formation and stabilization of cell membranes and the DNA double helix structure. Here, we introduce phospholipid reverse micelles with variable water content (between one and sixteen water molecules per phospholipid) as a model system to study elementary phosphate-water interactions. The fastest processes at phosphate-water interfaces , e.g. hydrogen-bond dynamics and vibrational energy transfer occur on a femto- to picosecond time scale. Since molecular vibrations are sensitive local probes of the structure and dynamics, the use of femtosecond vibrational spectroscopy, in particular two-dimensional infrared spectroscopy (2D IR) and pump-probe spectroscopy in a broad spectral range, allow for the observation of microscopic phosphate-water interactions in real time. We present the first two-dimensional infrared spectra of phosphate stretching vibrations that represent true interfacial probes independent of the hydration level. Such spectra reveal that the fastest structural fluctuations of phospholipid headgroups occur on a 300-fs timescale whereas phosphate-water hydrogen bonds are preserved for >10 ps. Vibrational dynamics of intramolecular water vibrations, i.e., the OH stretching and bending modes show that small water pools around the phosphate groups form when three or more water molecules per phospholipid are present. Such water pools act as efficient heat sinks of excess energy deposited in intramolecular vibrations of water or the phosphate groups.
RIZZOGLIO, FABIO. "Nonlinear dimensionality reduction for human movement analysis with application to body machine interfaces". Doctoral thesis, Università degli studi di Genova, 2021. http://hdl.handle.net/11567/1038287.
Texto completoAanensen, Nina Sasaki. "Nonlinear Laser-induced Deformations and Forces at Liquid-Liquid Interfaces near the critical Point". Thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for fysikk, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-14264.
Texto completoLibros sobre el tema "Nonlinear interfaces"
Whitfield, Troy W. Nonlinear optics and liquid structures of interfaces. Ottawa: National Library of Canada, 1994.
Buscar texto completoCenter, NASA Glenn Research, ed. Nonlinear dynamics of a diffusing interface. [Cleveland, Ohio]: National Aeronautics and Space Administration, Glenn Research Center, 2001.
Buscar texto completoJ, McGilp, Weaire D. L y Patterson C. H. 1961-, eds. Epioptics: Linear and nonlinear optical spectroscopy of surfaces and interfaces. Berlin: Springer, 1995.
Buscar texto completoDynamics of internal layers and diffusive interfaces. Philadelphia, Pa: Society for Industrial and Applied Mathematics, 1988.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Interface technology for geometrically nonlinear analysis of multiple connected subdomains. [Reston, VA?]: American Institute of Aeronautics and Astronautics, 1997.
Buscar texto completoUnited States. National Aeronautics and Space Administration., ed. Interface technology for geometrically nonlinear analysis of multiple connected subdomains. [Reston, VA?]: American Institute of Aeronautics and Astronautics, 1997.
Buscar texto completoShabat, Mohammed Musa Ramadan. Linear and nonlinear electro-magnetic waves at magnetic and non-magnetic interfaces. Salford: University of Salford, 1990.
Buscar texto completoNelson, Cory A. Probing surfaces and interfaces by nonlinear optical spectroscopy with time, energy, and phase resolution. [New York, N.Y.?]: [publisher not identified], 2015.
Buscar texto completoAlicante, Raquel. Photoinduced Modifications of the Nonlinear Optical Response in Liquid Crystalline Azopolymers. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013.
Buscar texto completoCapítulos de libros sobre el tema "Nonlinear interfaces"
Nepomnyashchy, Alexander A. "Nonlinear dynamics of fronts". En Pattern Formation at Interfaces, 57–103. Vienna: Springer Vienna, 2010. http://dx.doi.org/10.1007/978-3-7091-0125-4_2.
Texto completoMills, D. L. "Nonlinear Optical Interactions at Surfaces and Interfaces". En Nonlinear Optics, 155–90. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-58937-9_8.
Texto completoStegeman, George I. y Colin T. Seaton. "Nonlinear Surface Polaritons". En Dynamical Phenomena at Surfaces, Interfaces and Superlattices, 266–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82535-4_26.
Texto completoKaplan, A. E., P. W. Smith y W. J. Tomlinson. "Nonlinear Waves and Switching Effects at Nonlinear Interfaces". En Nonlinear Waves in Solid State Physics, 93–111. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4684-5898-5_3.
Texto completoSakawa, Masatoshi. "Fuzzy Multiobjective Nonlinear Programming". En Operations Research/Computer Science Interfaces Series, 153–68. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-1519-7_8.
Texto completoSakawa, Masatoshi. "Genetic Algorithms for Nonlinear Programming". En Operations Research/Computer Science Interfaces Series, 133–51. Boston, MA: Springer US, 2002. http://dx.doi.org/10.1007/978-1-4615-1519-7_7.
Texto completoSchmitt-Rink, Stefan. "Ultrafast Nonlinear Optical Phenomena in Semiconductor Quantum Wells". En Interfaces, Quantum Wells, and Superlattices, 211–26. Boston, MA: Springer US, 1988. http://dx.doi.org/10.1007/978-1-4613-1045-7_12.
Texto completoLawal, I., S. Shah, M. Gonzalez-Madrid, T. Hu, C. W. Schwingshackl y M. R. W. Brake. "The Effect of Non-Flat Interfaces On System Dynamics". En Nonlinear Dynamics, Volume 1, 187–97. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-74280-9_21.
Texto completoLemaitre, Jean. "Conditions of Crack Arrest by Interfaces". En IUTAM Symposium on Nonlinear Analysis of Fracture, 125–33. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5642-4_12.
Texto completoDodson, Jacob C., Janet Wolfson, Jason R. Foley y Daniel J. Inman. "Transmission of Guided Waves Across Prestressed Interfaces". En Topics in Nonlinear Dynamics, Volume 3, 83–94. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-4614-2416-1_8.
Texto completoActas de conferencias sobre el tema "Nonlinear interfaces"
Baron, Alexandre, Thang B. Hoang, Chao Fang, Stéphane Larouche, Daniel J. Gauthier, Maiken H. Mikkelsen y David R. Smith. "Nonlinear Metal/Dielectric Plasmonic Interfaces". En Nonlinear Optics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/nlo.2015.ntu2b.2.
Texto completoSánchez-Curto, Julio, Pedro Chamorro-Posada y Graham S. McDonald. "Helmholtz dark solitons at nonlinear defocusing interfaces". En Nonlinear Photonics. Washington, D.C.: OSA, 2010. http://dx.doi.org/10.1364/np.2010.ntuc22.
Texto completoWen, Yu-Chieh, Xiaofan Xu, Shuai Zha, Yuen Ron Shen y Chuanshan Tian. "Structure of Water Interfaces Studied by Phase Sensitive Sum Frequency Vibrational Spectroscopy". En Nonlinear Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/nlo.2013.nth2b.3.
Texto completoMcCoy, E. A., J. M. Christian, G. S. McDonald, J. Sánchez-Curto y P. Chamorro-Posada. "Refraction and Goos-Hänchen Shifts of Spatial Solitons at Cubic-Quintic Interfaces". En Nonlinear Optics. Washington, D.C.: OSA, 2013. http://dx.doi.org/10.1364/nlo.2013.nw2a.3.
Texto completoPotma, Eric O. y John Kenison. "Coherent Raman scattering at interfaces (Conference Presentation)". En Ultrafast Nonlinear Imaging and Spectroscopy VI, editado por Zhiwen Liu, Demetri Psaltis y Kebin Shi. SPIE, 2018. http://dx.doi.org/10.1117/12.2322636.
Texto completoXiong, Wei, Jennifer E. Laaser, Peerasak Paoprasert, Ryan A. Franking, Robert J. Hamers, Padma Gopalan y Martin T. Zanni. "Nonlinear spectroscopy on charge transfer interfaces". En SPIE NanoScience + Engineering. SPIE, 2011. http://dx.doi.org/10.1117/12.897551.
Texto completoBoardman, Allan, Neil King, Yuriy Rapoport y Larry Velasco. "Nonlinear gyrotropic guided waves at negatively refracting interfaces". En Nonlinear Guided Waves and Their Applications. Washington, D.C.: OSA, 2005. http://dx.doi.org/10.1364/nlgw.2005.thb19.
Texto completoVicente, Rafael A., Guilherme H. Oliveira, Pablo S. Fernández y Rene Nome. "Low-frequency stimulated Raman spectroscopy measurements at electrochemical interfaces". En Ultrafast Nonlinear Imaging and Spectroscopy VIII, editado por Zhiwen Liu, Demetri Psaltis y Kebin Shi. SPIE, 2020. http://dx.doi.org/10.1117/12.2567098.
Texto completoFerrando, A., C. Milian, D. Ceballos y D. V. Skryabin. "Stability of soliplasmon excitations at metal/dielectric interfaces". En 2011 IEEE International Workshop "Nonlinear Photonics" (NLP). IEEE, 2011. http://dx.doi.org/10.1109/nlp.2011.6102645.
Texto completoHÄRTERICH, J. y K. SAKAMOTO. "INTERFACES DRIVEN BY REACTION, DIFFUSION AND CONVECTION". En Proceedings of the International Conference on Nonlinear Analysis. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812709257_0015.
Texto completoInformes sobre el tema "Nonlinear interfaces"
Benderskii, Alexander V. Nonlinear Spectroscopies of Nanostructured Surfaces and Interfaces. Fort Belvoir, VA: Defense Technical Information Center, noviembre de 2009. http://dx.doi.org/10.21236/ada563142.
Texto completoMiranda, Paulo B. Nonlinear vibrational spectroscopy of surfactants at liquid interfaces. Office of Scientific and Technical Information (OSTI), diciembre de 1998. http://dx.doi.org/10.2172/6502.
Texto completoRichmond, Geraldine L. y Stephen D. Kevan. Nonlinear Studies of Surface and Interfaces of Advanced Semiconductor Materials. Fort Belvoir, VA: Defense Technical Information Center, julio de 1992. http://dx.doi.org/10.21236/ada253365.
Texto completoRichmond, Geraldine y Stephen Kevan. Nonlinear Studies of Surfaces and Interfaces of Advanced Semiconductor Materials. Fort Belvoir, VA: Defense Technical Information Center, julio de 1992. http://dx.doi.org/10.21236/ada254324.
Texto completoJacobs-O'Malley, Laura Diane y John Hofer. Nonlinear Feature Extraction and Energy Dissipation of Foam/Metal Interfaces. Office of Scientific and Technical Information (OSTI), abril de 2017. http://dx.doi.org/10.2172/1595879.
Texto completoGeiger, Franz. Uranium(IV) Interaction with Aqueous/Solid Interfaces Studied by Nonlinear Optics. Office of Scientific and Technical Information (OSTI), marzo de 2015. http://dx.doi.org/10.2172/1176883.
Texto completoMiles, Aaron R. The Effect of Initial Conditions on the Nonlinear Evolution of Perturbed Interfaces Driven by Strong Blast Waves. Office of Scientific and Technical Information (OSTI), enero de 2004. http://dx.doi.org/10.2172/15014148.
Texto completoFurtak, T. E. Vibrational spectroscopy of buried interfaces using nonlinear optics. Final technical report, July 7, 1986--February 29, 1996. Office of Scientific and Technical Information (OSTI), mayo de 1996. http://dx.doi.org/10.2172/286295.
Texto completoS. Enguehard y B. Hatfield. Web-interfaced Nonlinear Optical Waveguide and Photonic Crystal Simulator. Office of Scientific and Technical Information (OSTI), junio de 2002. http://dx.doi.org/10.2172/936601.
Texto completoAbrahamson, Norman y Zeynep Gülerce. Regionalized Ground-Motion Models for Subduction Earthquakes Based on the NGA-SUB Database. Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, diciembre de 2020. http://dx.doi.org/10.55461/ssxe9861.
Texto completo