Artículos de revistas sobre el tema "Nonlinear field equations"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Nonlinear field equations.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Nonlinear field equations".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Tan, Jinggang, Ying Wang y Jianfu Yang. "Nonlinear fractional field equations". Nonlinear Analysis: Theory, Methods & Applications 75, n.º 4 (marzo de 2012): 2098–110. http://dx.doi.org/10.1016/j.na.2011.10.010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Fairlie, David B. "Interconnections among nonlinear field equations". Journal of Physics A: Mathematical and Theoretical 53, n.º 10 (20 de febrero de 2020): 104001. http://dx.doi.org/10.1088/1751-8121/ab6f17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Rego-Monteiro, M. A. y F. D. Nobre. "Nonlinear quantum equations: Classical field theory". Journal of Mathematical Physics 54, n.º 10 (octubre de 2013): 103302. http://dx.doi.org/10.1063/1.4824129.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tanaka, Yosuke, Takefumi Shudo, Tetsutaro Yosinaga y Hiroshi Kimura. "Relativistic field equations and nonlinear dynamics". Chaos, Solitons & Fractals 37, n.º 4 (agosto de 2008): 941–49. http://dx.doi.org/10.1016/j.chaos.2008.01.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Burt, P. B. "Nonperturbative solution of nonlinear field equations". Il Nuovo Cimento B 100, n.º 1 (julio de 1987): 43–52. http://dx.doi.org/10.1007/bf02829775.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Wells, R. O. "Nonlinear field equations and twistor theory". Mathematical Intelligencer 7, n.º 2 (junio de 1985): 26–32. http://dx.doi.org/10.1007/bf03024171.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Bruce, S. A. "Nonlinear Maxwell equations and strong-field electrodynamics". Physica Scripta 97, n.º 3 (10 de febrero de 2022): 035303. http://dx.doi.org/10.1088/1402-4896/ac50c2.

Texto completo
Resumen
Abstract We investigate two Lagrangian models of nonlinear electrodynamics (NLED). These models lead to two different sets of nonlinear (NL) Maxwell equations. The first case deals with the well-known Heisenberg-Euler (HE) model of electromagnetic (EM) self-interactions in a vacuum where only the lowest orders in EM Lorentz invariants are considered. The second instance proposes an extension of the HE model. It consists of a NL Maxwell-Dirac spinor model where the EM field modifies the dynamics of the energy-momentum operator sector of the Dirac Lagrangian instead of its rest-mass term counterpart. This work complements our recent research on NL Dirac equations in the strong EM field regime.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Clapp, Mónica y Tobias Weth. "Multiple Solutions of Nonlinear Scalar Field Equations". Communications in Partial Differential Equations 29, n.º 9-10 (2 de enero de 2005): 1533–54. http://dx.doi.org/10.1081/pde-200037766.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Mederski, Jarosław. "Nonradial solutions of nonlinear scalar field equations". Nonlinearity 33, n.º 12 (23 de octubre de 2020): 6349–80. http://dx.doi.org/10.1088/1361-6544/aba889.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Liu, Jiu, Tao Liu y Jia-Feng Liao. "A perturbation of nonlinear scalar field equations". Nonlinear Analysis: Real World Applications 45 (febrero de 2019): 531–41. http://dx.doi.org/10.1016/j.nonrwa.2018.07.022.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Jeanjean, Louis y Sheng-Sen Lu. "Nonlinear scalar field equations with general nonlinearity". Nonlinear Analysis 190 (enero de 2020): 111604. http://dx.doi.org/10.1016/j.na.2019.111604.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Edelen, Dominic G. B. y Jianhua Wang. "Transformation methods for solving nonlinear field equations". International Journal of Theoretical Physics 30, n.º 6 (junio de 1991): 865–906. http://dx.doi.org/10.1007/bf00674028.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Edelen, Dominic G. B. "Ideals and solutions of nonlinear field equations". International Journal of Theoretical Physics 29, n.º 7 (julio de 1990): 687–737. http://dx.doi.org/10.1007/bf00673909.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Grauel, A. "Nonlinear field equations and the Painlevé test". Chinese Physics Letters 3, n.º 5 (mayo de 1986): 201–4. http://dx.doi.org/10.1088/0256-307x/3/5/003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Burt, P. B. y T. J. Pickett. "Nonperturbative solution construction of nonlinear field equations". Lettere Al Nuovo Cimento Series 2 44, n.º 7 (diciembre de 1985): 473–76. http://dx.doi.org/10.1007/bf02746743.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Li, C. M. y Y. Y. Li. "Nonautonomous Nonlinear Scalar Field Equations in R2". Journal of Differential Equations 103, n.º 2 (junio de 1993): 421–36. http://dx.doi.org/10.1006/jdeq.1993.1058.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Bekova, G. T. y A. A. Zhadyranova. "MULTI-LINE SOLITON SOLUTIONS FOR THE TWO-DIMENSIONAL NONLINEAR HIROTA EQUATION". PHYSICO-MATHEMATICAL SERIES 2, n.º 336 (15 de abril de 2021): 172–78. http://dx.doi.org/10.32014/2021.2518-1726.38.

Texto completo
Resumen
At present, the question of studying multidimensional nonlinear integrable equations in the framework of the theory of solitons is very interesting to foreign and Kazakh scientists. Many physical phenomena that occur in nature can be described by nonlinearly integrated equations. Finding specific solutions to such equations plays an important role in studying the dynamics of phenomena occurring in various scientific and engineering fields, such as solid state physics, fluid mechanics, plasma physics and nonlinear optics. There are several methods for obtaining real and soliton, soliton-like solutions of such equations: the inverse scattering method, the Hirota’s bilinear method, Darboux transformation methods, the tanh-coth and the sine-cosine methods. In our work, we studied the two-dimensional Hirota equation, which is a modified nonlinear Schrödinger equation. The nonlinear Hirota equation is one of the integrating equations and the Hirota system is used in the field of study of optical fiber systems, physics, telecommunications and other engineering fields to describe many nonlinear phenomena. To date, the first, second, and n-order Darboux transformations have been developed for the two- dimensional system of Hirota equations, and the soliton, rogue wave solutions have been determined by various methods. In this article, we consider the two-dimensional nonlinear Hirota equations. Using the Lax pair and Darboux transformation we obtained the first and the second multi-line soliton solutions for this equation and provided graphical representation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

El-Nabulsi, Rami Ahmad. "Nonlinear integro-differential Einstein’s field equations from nonstandard Lagrangians". Canadian Journal of Physics 92, n.º 10 (octubre de 2014): 1149–53. http://dx.doi.org/10.1139/cjp-2013-0713.

Texto completo
Resumen
Given a manifold [Formula: see text] described by coordinates {xμ} and a space–time metric gμν on [Formula: see text] describing the gravitational field whose standard action is the Einstein–Hilbert action, we observe that if the action functional of spinor fields {Ψ(S)(x)}, S = 1, 2, …, N representing the matter and gauge fields holds a nonstandard exponential Lagrangian, the modified Einstein field equations acquire nonlinear partial integro-differential forms where both spinor and gravitational fields come out together.
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Richter, E. W. "Similarity Solutions of the Force-free Magnetic Field Equations". Zeitschrift für Naturforschung A 49, n.º 9 (1 de septiembre de 1994): 902–12. http://dx.doi.org/10.1515/zna-1994-0914.

Texto completo
Resumen
Abstract Force-free magnetic fields are described as solutions of special nonlinear partial differential equations which are replaced frequently through linear equations. To record the diversity of the structures of these fields, a discussion of the nonlinear equations is necessary. For this purpose the method of similarity analysis is used. The Lie symmetry groups admitted by the nonlinear equations for force-free magnetic fields are presented. To record and classify the different types of group-invariant solutions, one-and two-dimensional optimal systems of subalgebras are listed. The reduced equations of the two-dimensional optimal system are systems of ordinary differential equations, and their solutions define similarity solutions which are force-free magnetic fields. Only in one case is it necessary to calculate similarity solutions numerically. The corresponding reduced equations are a nonautonomous dynamical system with the similarity variable in the place of time.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Mitra, Indranil y Pranab Krishna Chanda. "A New Class of Exact Solutions to a Generalized form of Charap’s Nonlinear Chiral Field Equations of Field Theory". Annals of Pure and Applied Mathematics 14, n.º 3 (17 de octubre de 2017): 417–26. http://dx.doi.org/10.22457/apam.v14n3a8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Kuman, Maria. "Crystals Influence the Body through our Weak Nonlinear Electromagnetic Field (NEMF)". Journal of Natural & Ayurvedic Medicine 3, n.º 3 (15 de julio de 2019): 1–2. http://dx.doi.org/10.23880/jonam-16000200.

Texto completo
Resumen
In article [1], we presented our measurements about the effect of crystals on the human health and wellbeing. In the present article, we are going to explain how this is done. In [2], we used nonlinear mathematical model to describe the effect of acupuncture treatment. Nonlinear equations have more than one solution and our nonlinear equation had two solutions-electric impulse and wave. Electric impulses generated at acupuncture treatment and propagating along the acupuncture meridian were already measured in China. However, nobody has measured waves generated at acupuncture treatment and propagating along the acupuncture meridian.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Clop, Albert y Banhirup Sengupta. "Nonlinear transport equations and quasiconformal maps". Annales Fennici Mathematici 48, n.º 1 (16 de mayo de 2023): 375–87. http://dx.doi.org/10.54330/afm.130026.

Texto completo
Resumen
We prove existence of solutions to a nonlinear transport equation in the plane, for which the velocity field is obtained as the convolution of the classical Cauchy kernel with the unknown. Even though the initial datum is bounded and compactly supported, the velocity field may have unbounded divergence. The proof is based on the compactness property of quasiconformal mappings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Kruglikov, Boris. "Involutivity of field equations". Journal of Mathematical Physics 51, n.º 3 (2010): 032502. http://dx.doi.org/10.1063/1.3305321.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Byeon, Jaeyoung, Ohsang Kwon y Jinmyoung Seok. "Nonlinear scalar field equations involving the fractional Laplacian". Nonlinearity 30, n.º 4 (15 de marzo de 2017): 1659–81. http://dx.doi.org/10.1088/1361-6544/aa60b4.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Jeanjean, Louis y Sheng-Sen Lu. "Nonradial normalized solutions for nonlinear scalar field equations". Nonlinearity 32, n.º 12 (4 de noviembre de 2019): 4942–66. http://dx.doi.org/10.1088/1361-6544/ab435e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Mohammadi, M. y N. Riazi. "Approaching Integrability in Bi-Dimensional Nonlinear Field Equations". Progress of Theoretical Physics 126, n.º 2 (1 de agosto de 2011): 237–48. http://dx.doi.org/10.1143/ptp.126.237.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Yu, Rotha P., David M. Paganin y Michael J. Morgan. "Inferring nonlinear parabolic field equations from modulus data". Physics Letters A 341, n.º 1-4 (junio de 2005): 156–63. http://dx.doi.org/10.1016/j.physleta.2005.04.065.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Leo, R. A. y G. Soliani. "Incomplete Lie algebras generating integrable nonlinear field equations". Physics Letters B 222, n.º 3-4 (mayo de 1989): 415–18. http://dx.doi.org/10.1016/0370-2693(89)90335-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Alfinito, E., M. Leo, R. A. Leo, M. Palese y G. Soliani. "Integrable nonlinear field equations and loop algebra structures". Physics Letters B 352, n.º 3-4 (junio de 1995): 314–20. http://dx.doi.org/10.1016/0370-2693(95)00561-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Molle, Riccardo y Donato Passaseo. "Multiplicity of solutions of nonlinear scalar field equations". Rendiconti Lincei - Matematica e Applicazioni 26, n.º 1 (2015): 75–82. http://dx.doi.org/10.4171/rlm/693.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Pomeau, Y. "Asymptotic time behaviour of nonlinear classical field equations". Nonlinearity 5, n.º 3 (1 de mayo de 1992): 707–20. http://dx.doi.org/10.1088/0951-7715/5/3/005.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Gürses, Metin. "Integrability of Three Dimensional Gravity Field Equations". Journal of Physics: Conference Series 2191, n.º 1 (1 de febrero de 2022): 012013. http://dx.doi.org/10.1088/1742-6596/2191/1/012013.

Texto completo
Resumen
Abstract We show that the tree dimensional Einstein vacuum feld equations with cosmological constant are integrable. Using the sl(2, R) valued soliton connections we obtain the metric of the spacetime in terms of the dynamical variables of the integrable nonlinear partial diferential equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

LI, HE, XIANG-HUA MENG y BO TIAN. "BILINEAR FORM AND SOLITON SOLUTIONS FOR THE COUPLED NONLINEAR KLEIN–GORDON EQUATIONS". International Journal of Modern Physics B 26, n.º 15 (5 de junio de 2012): 1250057. http://dx.doi.org/10.1142/s0217979212500579.

Texto completo
Resumen
With the coupling of a scalar field, a generalization of the nonlinear Klein–Gordon equation which arises in the relativistic quantum mechanics and field theory, i.e., the coupled nonlinear Klein–Gordon equations, is investigated via the Hirota method. With the truncated Painlevé expansion at the constant level term with two singular manifolds, the coupled nonlinear Klein–Gordon equations are transformed to a bilinear form. Starting from the bilinear form, with symbolic computation, we obtain the N-soliton solutions for the coupled nonlinear Klein–Gordon equations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Cao, Dong Bo y Jia Ren Yan. "Traveling Wave Exact Solutions for Nonlinear Coupled Scalar Field Equations". Advanced Materials Research 284-286 (julio de 2011): 2053–56. http://dx.doi.org/10.4028/www.scientific.net/amr.284-286.2053.

Texto completo
Resumen
In the present paper, with the aid of symbolic computation, the nonlinear coupled scalar field equations relevant to materials physics are investigated by using the trigonometric function transform method. More exact traveling wave solutions are obtained for nonlinear coupled scalar field equations. The solutions obtained in this paper include four kinds of soliton solutions and four kinds of trigonometric function solutions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Courvoisier, A., D. W. Hughes y M. R. E. Proctor. "Self-consistent mean-field magnetohydrodynamics". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 466, n.º 2114 (29 de octubre de 2009): 583–601. http://dx.doi.org/10.1098/rspa.2009.0384.

Texto completo
Resumen
We consider the linear stability of two-dimensional nonlinear magnetohydrodynamic basic states to long-wavelength three-dimensional perturbations. Following Hughes & Proctor (Hughes & Proctor 2009 Proc. R. Soc. A 465 , 1599–1616 ( doi:10.1098/rspa.2008.0493 )), the two-dimensional basic states are obtained from a specific forcing function in the presence of an initially uniform mean field of strength . By extending to the nonlinear regime the kinematic analysis of Roberts (Roberts 1970 Phil. Trans. R. Soc. Lond. A 266 , 535–558 ( doi:10.1098/rsta.1970.0011 )), we show that it is possible to predict the growth rate of these perturbations by applying mean-field theory to both the momentum and the induction equations. If , these equations decouple and large-scale magnetic and velocity perturbations may grow via the kinematic α -effect and the anisotropic kinetic alpha instability, respectively. However, if , the momentum and induction equations are coupled by the Lorentz force; in this case, we show that four transport tensors are now necessary to determine the growth rate of the perturbations. We illustrate these situations by numerical examples; in particular, we show that a mean-field description of the nonlinear regime based solely on a quenched α coefficient is incorrect.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Caponigro, Marco, Benedetto Piccoli, Francesco Rossi y Emmanuel Trélat. "Mean-field sparse Jurdjevic–Quinn control". Mathematical Models and Methods in Applied Sciences 27, n.º 07 (11 de abril de 2017): 1223–53. http://dx.doi.org/10.1142/s0218202517400140.

Texto completo
Resumen
We consider nonlinear transport equations with non-local velocity describing the time-evolution of a measure. Such equations often appear when considering the mean-field limit of finite-dimensional systems modeling collective dynamics. We address the problem of controlling these equations by means of a time-varying bounded control action localized on a time-varying control subset of small Lebesgue measure. We first define dissipativity for nonlinear transport equations in terms of Lie derivatives of a Lyapunov function depending on the measure. Then, assuming that the uncontrolled system is dissipative, we provide an explicit construction of a control law steering the system to an invariant sublevel of the Lyapunov function. The control function and the control domain are designed in terms of the Lie derivatives of the Lyapunov function. In this sense the construction can be seen as an infinite-dimensional analogue of the well-known Jurdjevic–Quinn procedure. Moreover, the control law presents sparsity properties in the sense that the support of the control is small. Finally, we show that our result applies to a large class of kinetic equations modeling multi-agent dynamics.
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Açık, Özgür. "Field equations from Killing spinors". Journal of Mathematical Physics 59, n.º 2 (febrero de 2018): 023501. http://dx.doi.org/10.1063/1.4989434.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

FAN EN-GUI, ZHANG HONG-QING y LIN GANG. "EXACT SOLUTIONS TO THE NONLINEAR COUPLED SCALAR FIELD EQUATIONS". Acta Physica Sinica 47, n.º 7 (1998): 1064. http://dx.doi.org/10.7498/aps.47.1064.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

NISSIMOV, E., S. PACHEVA y S. SOLOMON. "ACTION PRINCIPLE FOR OVERDETERMINED SYSTEMS OF NONLINEAR FIELD EQUATIONS". International Journal of Modern Physics A 04, n.º 03 (febrero de 1989): 737–52. http://dx.doi.org/10.1142/s0217751x89000352.

Texto completo
Resumen
We propose a general scheme for constructing an action principle for arbitrary consistent overdetermined systems of nonlinear field equations. The principal tool is the BFV-BRST formalism. There is no need for star-product nor Chern-Simons forms. The main application of this general construction is the derivation of a superspace action in terms of unconstrained superfields for the D = 10N = 1 Super-Yang-Mills theory. The latter contains cubic as well as quartic interactions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Khrennikov, Andrei. "Nonlinear Schrödinger equations from prequantum classical statistical field theory". Physics Letters A 357, n.º 3 (septiembre de 2006): 171–76. http://dx.doi.org/10.1016/j.physleta.2006.04.046.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Vernov, S. Yu. "Exact solutions of nonlocal nonlinear field equations in cosmology". Theoretical and Mathematical Physics 166, n.º 3 (marzo de 2011): 392–402. http://dx.doi.org/10.1007/s11232-011-0031-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Malec, Edward. "The absence of small solutions of nonlinear field equations". Journal of Mathematical Physics 29, n.º 1 (enero de 1988): 235–37. http://dx.doi.org/10.1063/1.528179.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Ziepke, Alexander, Steffen Martens y Harald Engel. "Control of Nonlinear Wave Solutions to Neural Field Equations". SIAM Journal on Applied Dynamical Systems 18, n.º 2 (enero de 2019): 1015–36. http://dx.doi.org/10.1137/18m1197278.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Ikoma, Norihisa. "On radial solutions of inhomogeneous nonlinear scalar field equations". Journal of Mathematical Analysis and Applications 386, n.º 2 (febrero de 2012): 744–62. http://dx.doi.org/10.1016/j.jmaa.2011.08.032.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Steeb, Willi-Hans, Yorick Hardy y Ruedi Stoop. "Bessel Functions, Recursion and a Nonlinear Field Equation". Zeitschrift für Naturforschung A 56, n.º 9-10 (1 de octubre de 2001): 710–12. http://dx.doi.org/10.1515/zna-2001-0919.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Wennekers, Thomas. "Dynamic Approximation of Spatiotemporal Receptive Fields in Nonlinear Neural Field Models". Neural Computation 14, n.º 8 (1 de agosto de 2002): 1801–25. http://dx.doi.org/10.1162/089976602760128027.

Texto completo
Resumen
This article presents an approximation method to reduce the spatiotemporal behavior of localized activation peaks (also called “bumps”) in nonlinear neural field equations to a set of coupled ordinary differential equations (ODEs) for only the amplitudes and tuning widths of these peaks. This enables a simplified analysis of steady-state receptive fields and their stability, as well as spatiotemporal point spread functions and dynamic tuning properties. A lowest-order approximation for peak amplitudes alone shows that much of the well-studied behavior of small neural systems (e.g., the Wilson-Cowan oscillator) should carry over to localized solutions in neural fields. Full spatiotemporal response profiles can further be reconstructed from this low-dimensional approximation. The method is applied to two standard neural field models: a one-layer model with difference-of-gaussians connectivity kernel and a two-layer excitatory-inhibitory network. Similar models have been previously employed in numerical studies addressing orientation tuning of cortical simple cells. Explicit formulas for tuning properties, instabilities, and oscillation frequencies are given, and exemplary spatiotemporal response functions, reconstructed from the low-dimensional approximation, are compared with full network simulations.
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Tuszyński, J. A. y J. M. Dixon. "A Derivation of Relativistically-Invariant Nonlinear Field Equations for Strongly Interacting Many-Body Systems". International Journal of Modern Physics B 11, n.º 07 (20 de marzo de 1997): 929–44. http://dx.doi.org/10.1142/s0217979297000484.

Texto completo
Resumen
We re-examine the derivation of nonlinear field equations for a system of strongly interacting quasiparticles. Emphasis is placed on typical dispersion relations in the relativistic regime. Through Heisenberg's equations of motion for second-quantised operators we demonstrate that interacting many-body systems are described by a nonlinear Klein–Gordon type field equation. Its nonrelativistic equivalent was previously shown to be of the nonlinear Schrödinger type.
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Gómez‐Treviño, E. "Nonlinear integral equations for electromagnetic inverse problems". GEOPHYSICS 52, n.º 9 (septiembre de 1987): 1297–302. http://dx.doi.org/10.1190/1.1442390.

Texto completo
Resumen
The scaling properties of Maxwell’s equations allow the existence of simple yet general nonlinear integral equations for electrical conductivity. These equations were developed in an attempt to reduce the generality of linearization to the exclusive scope of electromagnetic problems. The reduction is achieved when the principle of similitude for quasi‐static fields is imposed on linearized forms of the field equations. The combination leads to exact integral relations which represent a unifying framework for the general electromagnetic inverse problem. The equations are of the same form in both time and frequency domains and hold for all observations that scale as electric and magnetic fields do; direct current resistivity and magnetometric resistivity methods are considered as special cases. The kernel functions of the integral equations are closely related, through a normalization factor, to the Frechét kernels of the conventional equations obtained by linearization. Accordingly, the sensitivity functions play the role of weighting functions for electrical conductivity despite the nonlinear dependence of the model and the data. In terms of the integral equations, the inverse problem consists of extracting information about a distribution of conductivity from a given set of its spatial averages. The form of the new equations leads to the consideration of their numerical solution through an approximate knowledge of their kernel functions. The integral equation for magnetotelluric soundings illustrates this approach in a simple fashion.
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

ROTA NODARI, SIMONA. "THE RELATIVISTIC MEAN-FIELD EQUATIONS OF THE ATOMIC NUCLEUS". Reviews in Mathematical Physics 24, n.º 04 (mayo de 2012): 1250008. http://dx.doi.org/10.1142/s0129055x12500080.

Texto completo
Resumen
In nuclear physics, the relativistic mean-field theory describes the nucleus as a system of Dirac nucleons which interact via meson fields. In a static case and without nonlinear self-coupling of the σ meson, the relativistic mean-field equations become a system of Dirac equations where the potential is given by the meson and photon fields. The aim of this work is to prove the existence of solutions of these equations. We consider a minimization problem with constraints that involve negative spectral projectors and we apply the concentration-compactness lemma to find a minimizer of this problem. We show that this minimizer is a solution of the relativistic mean-field equations considered.
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Dost, S. y P. G. Glockner. "On Beltrami-Michell-Like Equations for Nonlinear Elastic Dielectrics". Transactions of the Canadian Society for Mechanical Engineering 10, n.º 3 (septiembre de 1986): 167–73. http://dx.doi.org/10.1139/tcsme-1986-0019.

Texto completo
Resumen
Beltrami-Michell-like equations for nonlinear elastic dielectrics are obtained by choosing the deformation gradient, the polarization gradient and the polarization vector as independent field variables, so as to yield linear compatibility equations. The corresponding stress field also yields linear balance equations. Two simple examples for the case of semilinear isotropic elastic dielectrics are solved to illustrate the theory.
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía