Artículos de revistas sobre el tema "Nonlinear borates"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Nonlinear borates".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Yu, Daqiu y Dongfeng Xue. "Bond analyses of borates from the Inorganic Crystal Structure Database". Acta Crystallographica Section B Structural Science 62, n.º 5 (18 de septiembre de 2006): 702–9. http://dx.doi.org/10.1107/s0108768106018520.
Texto completoLi, Linyan, Guobao Li, Yingxia Wang, Fuhui Liao y Jianhua Lin. "Bismuth Borates: One-Dimensional Borate Chains and Nonlinear Optical Properties". Chemistry of Materials 17, n.º 16 (agosto de 2005): 4174–80. http://dx.doi.org/10.1021/cm050215d.
Texto completoFoldv´ari, Istvan, Katalin Polg´ar, Agnes P´eter, Elena Beregi y Zsuzsanna Szaller. "Growth and study of nonlinear optical crystals at the Hungarian Academy of Sciences". Journal of Telecommunications and Information Technology, n.º 1-2 (30 de junio de 2000): 37–41. http://dx.doi.org/10.26636/jtit.2000.1-2.15.
Texto completoPlachinda, Paul A., Valery A. Dolgikh, Sergey Yu Stefanovich y Petr S. Berdonosov. "Nonlinear-optical susceptibility of hilgardite-like borates ; )". Solid State Sciences 7, n.º 10 (octubre de 2005): 1194–200. http://dx.doi.org/10.1016/j.solidstatesciences.2005.05.006.
Texto completoVolkova, Elena A., Daniil A. Naprasnikov y Nikolay I. Leonyuk. "Thin Films and Glass–Ceramic Composites of Huntite Borates Family: A Brief Review". Crystals 10, n.º 6 (6 de junio de 2020): 487. http://dx.doi.org/10.3390/cryst10060487.
Texto completoWu, Chao, Longhua Li, Junling Song, Gang Yang, Mark G. Humphrey y Chi Zhang. "Solvent-controlled syntheses of mixed-alkali-metal borates exhibiting UV nonlinear optical properties". Inorganic Chemistry Frontiers 4, n.º 4 (2017): 692–700. http://dx.doi.org/10.1039/c7qi00001d.
Texto completoReshak, A. H. y S. Auluck. "Two haloid borate crystals with large nonlinear optical response". Physical Chemistry Chemical Physics 19, n.º 28 (2017): 18416–25. http://dx.doi.org/10.1039/c7cp02364b.
Texto completoWu, L., Y. Zhang, W. W. Su, Y. F. Kong y J. J. Xu. "Structural study of nonlinear optical borates K1−xNaxSr4(BO3)3 (x≤0.5)". Powder Diffraction 25, S1 (septiembre de 2010): S11—S16. http://dx.doi.org/10.1154/1.3478412.
Texto completoYao, Wenjiao, Ran He, Xiaoyang Wang, Zheshuai Lin y Chuangtian Chen. "Borates: Analysis of Deep-UV Nonlinear Optical Borates: Approaching the End (Advanced Optical Materials 5/2014)". Advanced Optical Materials 2, n.º 5 (mayo de 2014): 410. http://dx.doi.org/10.1002/adom.201470030.
Texto completoKang, Lei, Pifu Gong, Zheshuai Lin y Bing Huang. "Deep‐Ultraviolet Nonlinear‐Optical van‐der‐Waals Beryllium Borates**". Angewandte Chemie International Edition 60, n.º 30 (18 de junio de 2021): 16680–86. http://dx.doi.org/10.1002/anie.202105789.
Texto completoKang, Lei, Pifu Gong, Zheshuai Lin y Bing Huang. "Deep‐Ultraviolet Nonlinear‐Optical van‐der‐Waals Beryllium Borates**". Angewandte Chemie 133, n.º 30 (18 de junio de 2021): 16816–22. http://dx.doi.org/10.1002/ange.202105789.
Texto completoWei, Qi, Li Sun, Jie Zhang y Guo-Yu Yang. "Two deep-ultraviolet nonlinear optical alkaline-earth metal borates based on different types of oxoboron clusters". Dalton Transactions 46, n.º 24 (2017): 7911–16. http://dx.doi.org/10.1039/c7dt01677h.
Texto completoSubanakov, Alexey K., Evgeniy V. Kovtunets, Sampil Zh Choydonov, Sesegma G. Dorzhieva y Bair G. Bazarov. "Синтез и характеризация нового двойного бората рубидия–гольмия Rb3HoB6O12". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 21, n.º 2 (14 de junio de 2019): 278–86. http://dx.doi.org/10.17308/kcmf.2019.21/765.
Texto completoYao, Wenjiao, Ran He, Xiaoyang Wang, Zheshuai Lin y Chuangtian Chen. "Analysis of Deep-UV Nonlinear Optical Borates: Approaching the End". Advanced Optical Materials 2, n.º 5 (28 de febrero de 2014): 411–17. http://dx.doi.org/10.1002/adom.201300535.
Texto completoWei, Qi, Chao He, Bang-Di Ge, Meng-Xin Wan, Li Wei y Guo-Ming Wang. "Zeolitic Open-Framework Borates with Noncentrosymmetric Structures and Nonlinear Optical Properties". Inorganic Chemistry 58, n.º 5 (13 de febrero de 2019): 3527–34. http://dx.doi.org/10.1021/acs.inorgchem.9b00101.
Texto completoGiesber, H. "Synthesis and characterization of optically nonlinear and light emitting lanthanide borates". Information Sciences 149, n.º 1-3 (enero de 2003): 61–68. http://dx.doi.org/10.1016/s0020-0255(02)00245-1.
Texto completoMutailipu, Miriding, Min Zhang, Zhihua Yang y Shilie Pan. "Targeting the Next Generation of Deep-Ultraviolet Nonlinear Optical Materials: Expanding from Borates to Borate Fluorides to Fluorooxoborates". Accounts of Chemical Research 52, n.º 3 (22 de febrero de 2019): 791–801. http://dx.doi.org/10.1021/acs.accounts.8b00649.
Texto completoZhang, Bingbing, Xiaodong Zhang, Jin Yu, Ying Wang, Kui Wu y Ming-Hsien Lee. "First-Principles High-Throughput Screening Pipeline for Nonlinear Optical Materials: Application to Borates". Chemistry of Materials 32, n.º 15 (16 de julio de 2020): 6772–79. http://dx.doi.org/10.1021/acs.chemmater.0c02583.
Texto completoAtuchin, V. V., B. G. Bazarov, T. A. Gavrilova, V. G. Grossman, M. S. Molokeev y Zh G. Bazarova. "Preparation and structural properties of nonlinear optical borates K2(1−x)Rb2xAl2B2O7, 0". Journal of Alloys and Compounds 515 (febrero de 2012): 119–22. http://dx.doi.org/10.1016/j.jallcom.2011.11.115.
Texto completoSun, Zhenjie. "Application of third-order nonlinear optical materials in complex crystalline chemical reactions of borates". Nonlinear Engineering 11, n.º 1 (1 de enero de 2022): 609–14. http://dx.doi.org/10.1515/nleng-2022-0234.
Texto completoMutailipu, Miriding, Zhiqing Xie, Xin Su, Min Zhang, Ying Wang, Zhihua Yang, Muhammad Ramzan Saeed Ashraf Janjua y Shilie Pan. "Chemical Cosubstitution-Oriented Design of Rare-Earth Borates as Potential Ultraviolet Nonlinear Optical Materials". Journal of the American Chemical Society 139, n.º 50 (7 de diciembre de 2017): 18397–405. http://dx.doi.org/10.1021/jacs.7b11263.
Texto completoYan, Xue, Siyang Luo, Zheshuai Lin, Jiyong Yao, Ran He, Yinchao Yue y Chuangtian Chen. "ReBe2B5O11 (Re = Y, Gd): Rare-Earth Beryllium Borates as Deep-Ultraviolet Nonlinear-Optical Materials". Inorganic Chemistry 53, n.º 4 (28 de enero de 2014): 1952–54. http://dx.doi.org/10.1021/ic4029436.
Texto completoCai, Wenbing, Qun Jing y Jun Zhang. "Lone pair electron effect induced differences in linear and nonlinear optical properties of bismuth borates". New Journal of Chemistry 44, n.º 4 (2020): 1228–35. http://dx.doi.org/10.1039/c9nj05873g.
Texto completoQiu, Qi-Ming y Guo-Yu Yang. "Two deep-ultraviolet nonlinear optical barium borates framework: Alkali metal enhances the second-harmonic generation response". Journal of Solid State Chemistry 301 (septiembre de 2021): 122303. http://dx.doi.org/10.1016/j.jssc.2021.122303.
Texto completoYan, Xue, Siyang Luo, Zheshuai Lin, Jiyong Yao, Ran He, Yinchao Yue y Chuangtian Chen. "ChemInform Abstract: REBe2B5O11(RE: Y, Gd): Rare-Earth Beryllium Borates as Deep-Ultraviolet Nonlinear-Optical Materials." ChemInform 45, n.º 16 (3 de abril de 2014): no. http://dx.doi.org/10.1002/chin.201416015.
Texto completoZhang, Bingbing, Zhihua Yang, Yun Yang, Ming-Hsien Lee, Shilie Pan, Qun Jing y Xin Su. "p–(p,π*) interaction mechanism revealing and accordingly designed new member in deep-ultraviolet NLO borates LinMn−1B2n−1O4n−2 (M = Cs/Rb, n = 3, 4, 6)". J. Mater. Chem. C 2, n.º 21 (2014): 4133–41. http://dx.doi.org/10.1039/c4tc00363b.
Texto completoKuz’micheva, Galina, Irina Kaurova, Victor Rybakov y Vadim Podbel’skiy. "Crystallochemical Design of Huntite-Family Compounds". Crystals 9, n.º 2 (15 de febrero de 2019): 100. http://dx.doi.org/10.3390/cryst9020100.
Texto completoQiu, Qi-Ming y Guo-Yu Yang. "From [B6O13]8− to [GaB5O13]8− to [Ga{B5O9(OH)}{BO(OH)2}]2−: synthesis, structure and nonlinear optical properties of new metal borates". CrystEngComm 23, n.º 30 (2021): 5200–5207. http://dx.doi.org/10.1039/d1ce00719j.
Texto completoKuz’min, N. N., K. N. Boldyrev, N. I. Leonyuk, S. Yu Stefanovich y M. N. Popova. "Luminescence and Nonlinear Optical Properties of Borates LnGa3(BO3)4 (Ln = Nd, Sm, Tb, Er, Dy, or Ho)". Optics and Spectroscopy 127, n.º 1 (julio de 2019): 107–12. http://dx.doi.org/10.1134/s0030400x19070154.
Texto completoJiang, Xingxing, Siyang Luo, Lei Kang, Pifu Gong, Hongwei Huang, Shichao Wang, Zheshuai Lin y Chuangtian Chen. "First-Principles Evaluation of the Alkali and/or Alkaline Earth Beryllium Borates in Deep Ultraviolet Nonlinear Optical Applications". ACS Photonics 2, n.º 8 (7 de agosto de 2015): 1183–91. http://dx.doi.org/10.1021/acsphotonics.5b00248.
Texto completoDing, Fenghua, Matthew L. Nisbet, Weiguo Zhang, P. Shiv Halasyamani, Liyuan Chai y Kenneth R. Poeppelmeier. "Why Some Noncentrosymmetric Borates Do Not Make Good Nonlinear Optical Materials: A Case Study with K3B5O8(OH)2". Inorganic Chemistry 57, n.º 18 (31 de agosto de 2018): 11801–8. http://dx.doi.org/10.1021/acs.inorgchem.8b01965.
Texto completoBubnova, Rimma, Sergey Volkov, Barbara Albert y Stanislav Filatov. "Borates—Crystal Structures of Prospective Nonlinear Optical Materials: High Anisotropy of the Thermal Expansion Caused by Anharmonic Atomic Vibrations". Crystals 7, n.º 3 (22 de marzo de 2017): 93. http://dx.doi.org/10.3390/cryst7030093.
Texto completoAtuchin, V. V., B. G. Bazarov, T. A. Gavrilova, V. G. Grossman, M. S. Molokeev y Zh G. Bazarova. "ChemInform Abstract: Preparation and Structural Properties of Nonlinear Optical Borates K2(1-x)Rb2xAl2B2O7, 0 < x < 0.75." ChemInform 43, n.º 14 (8 de marzo de 2012): no. http://dx.doi.org/10.1002/chin.201214013.
Texto completoWang, Shuao, Evgeny V. Alekseev, Jie Ling, Guokui Liu, Wulf Depmeier y Thomas E. Albrecht-Schmitt. "Polarity and Chirality in Uranyl Borates: Insights into Understanding the Vitrification of Nuclear Waste and the Development of Nonlinear Optical Materials". Chemistry of Materials 22, n.º 6 (23 de marzo de 2010): 2155–63. http://dx.doi.org/10.1021/cm9037796.
Texto completoTopnikova, Anastasiia, Elena Belokoneva, Olga Dimitrova, Anatoliy Volkov y Sergey Stefanovich. "New borates with similar structures and different properties – acentric nonlinear optical KGd[B6O10(OH)2] and centrosymmetric KHo[B6O10(OH)2]". Acta Crystallographica Section A Foundations and Advances 74, a2 (22 de agosto de 2018): e234-e234. http://dx.doi.org/10.1107/s2053273318091647.
Texto completoBelokoneva, E. L., A. P. Topnikova, S. Yu Stefanovich, E. A. Dobretsova, A. S. Volkov y O. V. Dimitrova. "New isoformula borates with similar structures and different properties – Acentric nonlinear optical KGd[B6O10(OH)2] and centrosymmetric KHo[B6O10(OH)2]". Solid State Sciences 46 (agosto de 2015): 43–48. http://dx.doi.org/10.1016/j.solidstatesciences.2015.05.012.
Texto completoWang, Shuao, Evgeny V. Alekseev, Jie Ling, Guokui Liu, Wulf Depmeier y Thomas E. Albrecht-Schmitt. "ChemInform Abstract: Polarity and Chirality in Uranyl Borates: Insights into Understanding the Vitrification of Nuclear Waste and the Development of Nonlinear Optical Materials." ChemInform 41, n.º 33 (24 de julio de 2010): no. http://dx.doi.org/10.1002/chin.201033019.
Texto completoCheng, Lin, Qi Wei, Han-Qing Wu, Liu-Jiang Zhou y Guo-Yu Yang. "Ba3M2[B3O6(OH)]2[B4O7(OH)2] (M=Al, Ga): Two Novel UV Nonlinear Optical Metal Borates Containing Two Types of Oxoboron Clusters". Chemistry - A European Journal 19, n.º 52 (22 de noviembre de 2013): 17662–67. http://dx.doi.org/10.1002/chem.201303088.
Texto completoKosyl, Katarzyna M., Wojciech Paszkowicz, Roman Minikayev, Alexey N. Shekhovtsov, Miron B. Kosmyna, Maciej Chrunik y Andrew N. Fitch. "Site-occupancy scheme in disordered Ca3RE2(BO3)4: a dependence on rare-earth (RE) ionic radius". Acta Crystallographica Section B Structural Science, Crystal Engineering and Materials 77, n.º 3 (7 de mayo de 2021): 339–46. http://dx.doi.org/10.1107/s2052520621002328.
Texto completoBelokoneva, E. L., A. P. Topnikova, S. Yu Stefanovich, E. A. Dobretsova, A. S. Volkov y O. V. Dimitrova. "ChemInform Abstract: New Isoformula Borates with Similar Structures and Different Properties - Acentric Nonlinear Optical KGd[B6O10(OH)2] and Centrosymmetric KHo[B6O10(OH)2]." ChemInform 46, n.º 36 (20 de agosto de 2015): no. http://dx.doi.org/10.1002/chin.201536013.
Texto completoCheng, Lin, Qi Wei, Han-Qing Wu, Liu-Jiang Zhou y Guo-Yu Yang. "ChemInform Abstract: Ba3M2[B3O6(OH)]2[B4O7(OH)2] (M: Al, Ga): Two Novel UV Nonlinear Optical Metal Borates Containing Two Types of Oxoboron Clusters." ChemInform 45, n.º 14 (21 de marzo de 2014): no. http://dx.doi.org/10.1002/chin.201414006.
Texto completoBelokoneva, Elena L., Sergej Yu Stefanovich y Olga V. Dimitrova. "New nonlinear optical potassium iodate K[IO3] and borates K3[B6O10]Br, KTa[B4O6(OH)4](OH)2·1.33H2O—Synthesis, structures and relation to the properties". Journal of Solid State Chemistry 195 (noviembre de 2012): 79–85. http://dx.doi.org/10.1016/j.jssc.2012.01.036.
Texto completoКовтунец, Евгений Викторович, Алексей Карпович Субанаков y Баир Гармаевич Базаров. "Синтез, структура и люминесцентные свойства нового двойного бората K3Eu3B4O12". Kondensirovannye sredy i mezhfaznye granitsy = Condensed Matter and Interphases 22, n.º 2 (25 de junio de 2020): 219–24. http://dx.doi.org/10.17308/kcmf.2020.22/2823.
Texto completoBelokoneva, Elena L., Sergej Yu Stefanovich y Olga V. Dimitrova. "ChemInform Abstract: New Nonlinear Optical Potassium Iodate K[IO3] and Borates K3[B6O10]Br, KTa[B4O6(OH)4] (OH)2·1.33H2O - Synthesis, Structures and Relation to the Properties." ChemInform 43, n.º 52 (18 de diciembre de 2012): no. http://dx.doi.org/10.1002/chin.201252012.
Texto completoArun Kumar, R. "Borate Crystals for Nonlinear Optical and Laser Applications: A Review". Journal of Chemistry 2013 (2013): 1–6. http://dx.doi.org/10.1155/2013/154862.
Texto completoRodrigo G. dos Santos, Rodrigo G. dos Santos, Lauro J. Q. Maia Lauro J. Q. Maia, Cid B. de Araújo Cid B. de Araújo y Leonardo de S. Menezes Leonardo de S. Menezes. "Nonlinear optical characterization of single β-barium-borate nanocrystals using second-harmonic confocal microscopy". Chinese Optics Letters 16, n.º 4 (2018): 041902. http://dx.doi.org/10.3788/col201816.041902.
Texto completoSASAKI, TAKATOMO, YUSUKE MORI y MASASHI YOSHIMURA. "DEVELOPMENT OF NEW NLO BORATE CRYSTALS". Journal of Nonlinear Optical Physics & Materials 10, n.º 02 (junio de 2001): 249–63. http://dx.doi.org/10.1142/s0218863501000589.
Texto completoBecker, Petra. "Borate Materials in Nonlinear Optics". Advanced Materials 10, n.º 13 (septiembre de 1998): 979–92. http://dx.doi.org/10.1002/(sici)1521-4095(199809)10:13<979::aid-adma979>3.0.co;2-n.
Texto completoB Harde, Gajanan. "Measurements of Nonlinear Absorption and Refraction Coefficients of Pure and Nd Doped Calcium Lanthanum Borate Glasses". International Journal of Science and Research (IJSR) 12, n.º 4 (5 de abril de 2023): 1317–20. http://dx.doi.org/10.21275/sr23415161529.
Texto completoXue, D., K. Betzler, H. Hesse y D. Lammers. "Nonlinear optical properties of borate crystals". Solid State Communications 114, n.º 1 (marzo de 2000): 21–25. http://dx.doi.org/10.1016/s0038-1098(99)00579-7.
Texto completo