Literatura académica sobre el tema "Noncommutative rings"

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Noncommutative rings".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Artículos de revistas sobre el tema "Noncommutative rings"

1

Buckley, S. y D. MacHale. "Noncommutative Anticommutative Rings". Irish Mathematical Society Bulletin 0018 (1987): 55–57. http://dx.doi.org/10.33232/bims.0018.55.57.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Cohn, P. M. "NONCOMMUTATIVE NOETHERIAN RINGS". Bulletin of the London Mathematical Society 20, n.º 6 (noviembre de 1988): 627–29. http://dx.doi.org/10.1112/blms/20.6.627.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

KAUCIKAS, ALGIRDAS y ROBERT WISBAUER. "NONCOMMUTATIVE HILBERT RINGS". Journal of Algebra and Its Applications 03, n.º 04 (diciembre de 2004): 437–43. http://dx.doi.org/10.1142/s0219498804000964.

Texto completo
Resumen
Commutative rings in which every prime ideal is the intersection of maximal ideals are called Hilbert (or Jacobson) rings. This notion was extended to noncommutative rings in two different ways by the requirement that prime ideals are the intersection of maximal or of maximal left ideals, respectively. Here we propose to define noncommutative Hilbert rings by the property that strongly prime ideals are the intersection of maximal ideals. Unlike for the other definitions, these rings can be characterized by a contraction property: R is a Hilbert ring if and only if for all n∈ℕ every maximal ideal [Formula: see text] contracts to a maximal ideal of R. This definition is also equivalent to [Formula: see text] being finitely generated as an [Formula: see text]-module, i.e., a liberal extension. This gives a natural form of a noncommutative Hilbert's Nullstellensatz. The class of Hilbert rings is closed under finite polynomial extensions and under integral extensions.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Alajbegovic̀, Jusuf H. y Nikolai I. Dubrovin. "Noncommutative prüfer rings". Journal of Algebra 135, n.º 1 (noviembre de 1990): 165–76. http://dx.doi.org/10.1016/0021-8693(90)90155-h.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Dubrovin, N. I. "NONCOMMUTATIVE PRÜFER RINGS". Mathematics of the USSR-Sbornik 74, n.º 1 (28 de febrero de 1993): 1–8. http://dx.doi.org/10.1070/sm1993v074n01abeh003330.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Wang, Jian, Yunxia Li y Jiangsheng Hu. "Noncommutative G-semihereditary rings". Journal of Algebra and Its Applications 17, n.º 01 (enero de 2018): 1850014. http://dx.doi.org/10.1142/s0219498818500147.

Texto completo
Resumen
In this paper, we introduce and study left (right) [Formula: see text]-semihereditary rings over any associative ring, and these rings are exactly [Formula: see text]-semihereditary rings defined by Mahdou and Tamekkante provided that [Formula: see text] is a commutative ring. Some new characterizations of left [Formula: see text]-semihereditary rings are given. Applications go in three directions. The first is to give a sufficient condition when a finitely presented right [Formula: see text]-module is Gorenstein flat if and only if it is Gorenstein projective provided that [Formula: see text] is left coherent. The second is to investigate the relationships between Gorenstein flat modules and direct limits of finitely presented Gorenstein projective modules. The third is to obtain some new characterizations of semihereditary rings, [Formula: see text]-[Formula: see text] rings and [Formula: see text] rings.
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Ghorbani, A. y M. Naji Esfahani. "On noncommutative FGC rings". Journal of Algebra and Its Applications 14, n.º 07 (24 de abril de 2015): 1550109. http://dx.doi.org/10.1142/s0219498815501091.

Texto completo
Resumen
Many studies have been conducted to characterize commutative rings whose finitely generated modules are direct sums of cyclic modules (called FGC rings), however, the characterization of noncommutative FGC rings is still an open problem, even for duo rings. We study FGC rings in some special cases, it is shown that a local Noetherian ring R is FGC if and only if R is a principal ideal ring if and only if R is a uniserial ring, and if these assertions hold R is a duo ring. We characterize Noetherian duo FGC rings. In fact, it is shown that a duo ring R is a Noetherian left FGC ring if and only if R is a Noetherian right FGC ring, if and only if R is a principal ideal ring.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

MacKenzie, Kenneth W. "Polycyclic group rings and unique factorisation rings". Glasgow Mathematical Journal 36, n.º 2 (mayo de 1994): 135–44. http://dx.doi.org/10.1017/s0017089500030676.

Texto completo
Resumen
The theory of unique factorisation in commutative rings has recently been extended to noncommutative Noetherian rings in several ways. Recall that an element x of a ring R is said to be normalif xR = Rx. We will say that an element p of a ring R is (completely) prime if p is a nonzero normal element of R and pR is a (completely) prime ideal. In [2], a Noetherian unique factorisation domain (or Noetherian UFD) is defined to be a Noetherian domain in which every nonzero prime ideal contains a completely prime element: this concept is generalised in [4], where a Noetherian unique factorisation ring(or Noetherian UFR) is defined as a prime Noetherian ring in which every nonzero prime ideal contains a nonzero prime element; note that it follows from the noncommutative version of the Principal Ideal Theorem that in a Noetherian UFR, if pis a prime element then the height of the prime ideal pR must be equal to 1. Surprisingly many classes of noncommutative Noetherian rings are known to be UFDs or UFRs: see [2] and [4] for details. This theory has recently been extended still further, to cover certain classes of non-Noetherian rings: see [3].
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Zabavskii, B. V. "Noncommutative elementary divisor rings". Ukrainian Mathematical Journal 39, n.º 4 (1988): 349–53. http://dx.doi.org/10.1007/bf01060766.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Gatalevich, A. I. y B. V. Zabavs'kii. "Noncommutative elementary divisor rings". Journal of Mathematical Sciences 96, n.º 2 (agosto de 1999): 3013–16. http://dx.doi.org/10.1007/bf02169697.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Tesis sobre el tema "Noncommutative rings"

1

Zhang, Yufei. "Orderings on noncommutative rings". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape15/PQDD_0013/NQ32804.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Pandian, Ravi Samuel. "The structure of semisimple Artinian rings". CSUSB ScholarWorks, 2006. https://scholarworks.lib.csusb.edu/etd-project/2977.

Texto completo
Resumen
Proves two famous theorems attributed to J.H.M. Wedderburn, which concern the structure of noncommutative rings. The two theorems include, (1) how any semisimple Artinian ring is the direct sum of a finite number of simple rings; and, (2) the Wedderburn-Artin Theorem. Proofs in this paper follow those outlined in I.N. Herstein's monograph Noncommutative Rings with examples and details provided by the author.
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Nordstrom, Hans Erik. "Associated primes over Ore extensions and generalized Weyl algebras /". view abstract or download file of text, 2005. http://wwwlib.umi.com/cr/uoregon/fullcit?p3181118.

Texto completo
Resumen
Thesis (Ph. D.)--University of Oregon, 2005.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 48-49). Also available for download via the World Wide Web; free to University of Oregon users.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Rennie, Adam Charles. "Noncommutative spin geometry". Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Leroux, Christine M. "On universal localization of noncommutative Noetherian rings". Thesis, Northern Illinois University, 2013. http://pqdtopen.proquest.com/#viewpdf?dispub=3567765.

Texto completo
Resumen

The concepts of middle annihilators and links between prime ideals have been useful in studying classical localization. Universal localization has given us an alternative to classical localization as an approach to studying the localization of noncommutative Noetherian rings at prime and semiprime ideals. There are two main ideas we explore in this thesis. The first idea is the relationship between certain middle annihilator ideals, links between prime ideals, and universal localization. The second idea is to explore the circumstances under which the universal localization of a ring will be Noetherian, in the case where the ring is finitely generated as a module over its center.

Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Collier, Nicholas Richard. "On asymptotic stability of prime ideals in noncommutative rings". Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.403145.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Brandl, Mary-Katherine. "Primitive and Poisson spectra of non-semisimple twists of polynomial algebras /". view abstract or download file of text, 2001. http://wwwlib.umi.com/cr/uoregon/fullcit?p3024507.

Texto completo
Resumen
Thesis (Ph. D.)--University of Oregon, 2001.
Typescript. Includes vita and abstract. Includes bibliographical references (leaf 49). Also available for download via the World Wide Web; free to University of Oregon users.
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Low, Gordan MacLaren. "Injective modules and representational repleteness". Thesis, University of Glasgow, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.319776.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Brazfield, Christopher Jude. "Artin-Schelter regular algebras of global dimension 4 with two degree one generators /". view abstract or download file of text, 1999. http://wwwlib.umi.com/cr/uoregon/fullcit?p9947969.

Texto completo
Resumen
Thesis (Ph. D.)--University of Oregon, 1999.
Typescript. Includes vita and abstract. Includes bibliographical references (leaves 103-105). Also available for download via the World Wide Web; free to University of Oregon users. Address: http://wwwlib.umi.com/cr/uoregon/fullcit?p9947969.
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Rogozinnikov, Evgenii [Verfasser] y Anna [Akademischer Betreuer] Wienhard. "Symplectic groups over noncommutative rings and maximal representations / Evgenii Rogozinnikov ; Betreuer: Anna Wienhard". Heidelberg : Universitätsbibliothek Heidelberg, 2020. http://d-nb.info/1215758219/34.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Libros sobre el tema "Noncommutative rings"

1

Montgomery, Susan y Lance Small, eds. Noncommutative Rings. New York, NY: Springer New York, 1992. http://dx.doi.org/10.1007/978-1-4613-9736-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Susan, Montgomery, Small Lance W. 1941-, Mathematical Sciences Research Institute (Berkeley, Calif.) y Microprogram on Noncommutative Rings (1989 : Mathematical Sciences Research Institute), eds. Noncommutative rings. New York: Springer-Verlag, 1992.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

McConnell, J. C. Noncommutative Noetherian rings. Chichester [West Sussex]: Wiley, 1988.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

McConnell, J. C. Noncommutative Noetherian rings. Providence, R.I: American Mathematical Society, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

McConnell, J. C. Noncommutative Noetherian rings. Chichester: Wiley, 1987.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Lam, T. Y. A first course in noncommutative rings. 2a ed. New York: Springer, 2001.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Goodearl, K. R. An introduction to noncommutative Noetherian rings. 2a ed. Cambridge, U.K: Cambridge University Press, 2004.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Goodearl, K. R. An introduction to noncommutative noetherian rings. 2a ed. Cambridge, U.K: Cambridge Univeristy Press, 2004.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Dougherty, Steven, Alberto Facchini, André Leroy, Edmund Puczyłowski y Patrick Solé, eds. Noncommutative Rings and Their Applications. Providence, Rhode Island: American Mathematical Society, 2015. http://dx.doi.org/10.1090/conm/634.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Connes, Alain. Noncommutative geometry. San Diego: Academic Press, 1994.

Buscar texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Capítulos de libros sobre el tema "Noncommutative rings"

1

Shafarevich, Igor R. "Noncommutative Rings". En Encyclopaedia of Mathematical Sciences, 61–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26474-4_8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bokhut’, L. A., I. V. L’vov y V. K. Kharchenko. "Noncommutative Rings". En Encyclopaedia of Mathematical Sciences, 1–106. Berlin, Heidelberg: Springer Berlin Heidelberg, 1991. http://dx.doi.org/10.1007/978-3-642-72899-0_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Brungs, H. H. "Noncommutative Valuation Rings". En Perspectives in Ring Theory, 105–15. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-2985-2_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Warfield, R. B. "Noncommutative localized rings". En Lecture Notes in Mathematics, 178–200. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0099512.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Knapp, Anthony W. "Modules over Noncommutative Rings". En Basic Algebra, 553–91. Boston, MA: Birkhäuser Boston, 2006. http://dx.doi.org/10.1007/978-0-8176-4529-8_10.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Shafarevich, Igor R. "Modules over Noncommutative Rings". En Encyclopaedia of Mathematical Sciences, 74–79. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/3-540-26474-4_9.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Keeler, Dennis S. "The Rings of Noncommutative Projective Geometry". En Advances in Algebra and Geometry, 195–207. Gurgaon: Hindustan Book Agency, 2003. http://dx.doi.org/10.1007/978-93-86279-12-5_17.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Akalan, Evrim y Hidetoshi Marubayashi. "Multiplicative Ideal Theory in Noncommutative Rings". En Springer Proceedings in Mathematics & Statistics, 1–21. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-38855-7_1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Facchini, Alberto. "Commutative Monoids, Noncommutative Rings and Modules". En New Perspectives in Algebra, Topology and Categories, 67–111. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-84319-9_3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Ganchev, Alexander. "Fusion Rings and Tensor Categories". En Noncommutative Structures in Mathematics and Physics, 295–98. Dordrecht: Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-010-0836-5_23.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.

Actas de conferencias sobre el tema "Noncommutative rings"

1

MORI, IZURU. "NONCOMMUTATIVE PROJECTIVE SCHEMES AND POINT SCHEMES". En Proceedings of the International Conference on Algebras, Modules and Rings. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774552_0014.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Bergamaschi, Flaulles Boone y Regivan H. N. Santiago. "Strongly prime fuzzy ideals over noncommutative rings". En 2013 IEEE International Conference on Fuzzy Systems (FUZZ-IEEE). IEEE, 2013. http://dx.doi.org/10.1109/fuzz-ieee.2013.6622346.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Elhassani, Mustapha, Aziz Boulbot, Abdelhakim Chillali y Ali Mouhib. "Fully homomorphic encryption scheme on a nonCommutative ring R". En 2019 International Conference on Intelligent Systems and Advanced Computing Sciences (ISACS). IEEE, 2019. http://dx.doi.org/10.1109/isacs48493.2019.9068892.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía