Literatura académica sobre el tema "Noncommutative algebras"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Noncommutative algebras".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Noncommutative algebras"
Arutyunov, A. A. "Derivation Algebra in Noncommutative Group Algebras". Proceedings of the Steklov Institute of Mathematics 308, n.º 1 (enero de 2020): 22–34. http://dx.doi.org/10.1134/s0081543820010022.
Texto completoZhou, Chaoyuan. "Acyclic Complexes and Graded Algebras". Mathematics 11, n.º 14 (19 de julio de 2023): 3167. http://dx.doi.org/10.3390/math11143167.
Texto completoAbel, Mati y Krzysztof Jarosz. "Noncommutative uniform algebras". Studia Mathematica 162, n.º 3 (2004): 213–18. http://dx.doi.org/10.4064/sm162-3-2.
Texto completoXu, Ping. "Noncommutative Poisson Algebras". American Journal of Mathematics 116, n.º 1 (febrero de 1994): 101. http://dx.doi.org/10.2307/2374983.
Texto completoRoh, Jaiok y Ick-Soon Chang. "Approximate Derivations with the Radical Ranges of Noncommutative Banach Algebras". Abstract and Applied Analysis 2015 (2015): 1–7. http://dx.doi.org/10.1155/2015/594075.
Texto completoErcolessi, Elisa, Giovanni Landi y Paulo Teotonio-Sobrinho. "Noncommutative Lattices and the Algebras of Their Continuous Functions". Reviews in Mathematical Physics 10, n.º 04 (mayo de 1998): 439–66. http://dx.doi.org/10.1142/s0129055x98000148.
Texto completoFerreira, Vitor O., Jairo Z. Gonçalves y Javier Sánchez. "Free symmetric algebras in division rings generated by enveloping algebras of Lie algebras". International Journal of Algebra and Computation 25, n.º 06 (septiembre de 2015): 1075–106. http://dx.doi.org/10.1142/s0218196715500319.
Texto completoLiang, Shi-Dong y Matthew J. Lake. "An Introduction to Noncommutative Physics". Physics 5, n.º 2 (18 de abril de 2023): 436–60. http://dx.doi.org/10.3390/physics5020031.
Texto completoMahanta, Snigdhayan. "Noncommutative stable homotopy and stable infinity categories". Journal of Topology and Analysis 07, n.º 01 (2 de diciembre de 2014): 135–65. http://dx.doi.org/10.1142/s1793525315500077.
Texto completoLETZTER, EDWARD S. "NONCOMMUTATIVE IMAGES OF COMMUTATIVE SPECTRA". Journal of Algebra and Its Applications 07, n.º 05 (octubre de 2008): 535–52. http://dx.doi.org/10.1142/s0219498808002941.
Texto completoTesis sobre el tema "Noncommutative algebras"
Rennie, Adam Charles. "Noncommutative spin geometry". Title page, contents and introduction only, 2001. http://web4.library.adelaide.edu.au/theses/09PH/09phr4163.pdf.
Texto completoHartman, Gregory Neil. "Graphs and Noncommutative Koszul Algebras". Diss., Virginia Tech, 2002. http://hdl.handle.net/10919/27156.
Texto completoPh. D.
Schoenecker, Kevin J. "An infinite family of anticommutative algebras with a cubic form". Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187185559.
Texto completoRussell, Ewan. "Prime ideals in quantum algebras". Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3450.
Texto completoPhan, Christopher Lee 1980. "Koszul and generalized Koszul properties for noncommutative graded algebras". Thesis, University of Oregon, 2009. http://hdl.handle.net/1794/10367.
Texto completoWe investigate some homological properties of graded algebras. If A is an R -algebra, then E (A) := Ext A ( R, R ) is an R-algebra under the cup product and is called the Yoneda algebra. (In most cases, we assume R is a field.) A well-known and widely-studied condition on E(A) is the Koszul property. We study a class of deformations of Koszul algebras that arises from the study of equivariant cohomology and algebraic groups and show that under certain circumstances these deformations are Poincaré-Birkhoff-Witt deformations. Some of our results involve the [Special characters omitted] property, recently introduced by Cassidy and Shelton, which is a generalization of the Koszul property. While a Koszul algebra must be quadratic, a [Special characters omitted] algebra may have its ideal of relations generated in different degrees. We study the structure of the Yoneda algebra corresponding to a monomial [Special characters omitted.] algebra and provide an example of a monomial [Special characters omitted] algebra whose Yoneda algebra is not also [Special characters omitted]. This example illustrates the difficulty of finding a [Special characters omitted] analogue of the classical theory of Koszul duality. It is well-known that Poincaré-Birkhoff-Witt algebras are Koszul. We find a [Special characters omitted] analogue of this theory. If V is a finite-dimensional vector space with an ordered basis, and A := [Special characters omitted] (V)/I is a connected-graded algebra, we can place a filtration F on A as well as E (A). We show there is a bigraded algebra embedding Λ: gr F E (A) [Special characters omitted] E (gr F A ). If I has a Gröbner basis meeting certain conditions and gr F A is [Special characters omitted], then Λ can be used to show that A is also [Special characters omitted]. This dissertation contains both previously published and co-authored materials.
Committee in charge: Brad Shelton, Chairperson, Mathematics; Victor Ostrik, Member, Mathematics; Christopher Phillips, Member, Mathematics; Sergey Yuzvinsky, Member, Mathematics; Van Kolpin, Outside Member, Economics
Meyer, Jonas R. "Noncommutative Hardy algebras, multipliers, and quotients". Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/712.
Texto completoUhl, Christine. "Quantum Drinfeld Hecke Algebras". Thesis, University of North Texas, 2016. https://digital.library.unt.edu/ark:/67531/metadc862764/.
Texto completoZhao, Xiangui. "Groebner-Shirshov bases in some noncommutative algebras". London Mathematical Society, 2014. http://hdl.handle.net/1993/24315.
Texto completoOblomkov, Alexei. "Double affine Hecke algebras and noncommutative geometry". Thesis, Massachusetts Institute of Technology, 2005. http://hdl.handle.net/1721.1/31165.
Texto completoIncludes bibliographical references (p. 93-96).
In the first part we study Double Affine Hecke algebra of type An-1 which is important tool in the theory of orthogonal polynomials. We prove that the spherical subalgebra eH(t, 1)e of the Double Affine Hecke algebra H(t, 1) of type An-1 is an integral Cohen-Macaulay algebra isomorphic to the center Z of H(t, 1), and H(t, 1)e is a Cohen-Macaulay eH(t, 1)e-module with the property H(t, 1) = EndeH(t,tl)(H(t, 1)e). This implies the classification of the finite dimensional representations of the algebras. In the second part we study the algebraic properties of the five-parameter family H(tl, t2, t3, t4; q) of double affine Hecke algebras of type CVC1, which control Askey- Wilson polynomials. We show that if q = 1, then the spectrum of the center of H is an affine cubic surface C, obtained from a projective one by removing a triangle consisting of smooth points. Moreover, any such surface is obtained as the spectrum of the center of H for some values of parameters. We prove that the only fiat de- formations of H come from variations of parameters. This explains from the point of view of noncommutative geometry why one cannot add more parameters into the theory of Askey-Wilson polynomials. We also prove several results on the universality of the five-parameter family H(tl, t2, t3, t4; q) of algebras.
by Alexei Oblomkov.
Ph.D.
Gohm, Rolf. "Noncommutative stationary processes /". Berlin [u.a.] : Springer, 2004. http://www.loc.gov/catdir/enhancements/fy0813/2004103932-d.html.
Texto completoLibros sobre el tema "Noncommutative algebras"
Farb, Benson. Noncommutative algebra. New York: Springer-Verlag, 1993.
Buscar texto completoMarubayashi, Hidetoshi. Prime Divisors and Noncommutative Valuation Theory. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Buscar texto completoKhalkhali, Masoud y Guoliang Yu. Perspectives on noncommutative geometry. Providence, R.I: American Mathematical Society, 2011.
Buscar texto completoSilva, Ana Cannas da. Geometric models for noncommutative algebras. Providence, R.I: American Mathematical Society, 1999.
Buscar texto completoRosenberg, Alex. Noncommutative algebraic geometry and representations of quantized algebras. Dordrecht: Kluwer Academic Publishers, 1995.
Buscar texto completoCuculescu, I. Noncommutative probability. Dordrecht: Kluwer Academic Publishers, 1994.
Buscar texto completoRosenberg, Alexander L. Noncommutative Algebraic Geometry and Representations of Quantized Algebras. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2.
Texto completoDiep, Do Ngoc. Methods of noncommutative geometry for group C*-algebras. Boca Raton: Chapman & Hall/CRC, 2000.
Buscar texto completoBonfiglioli, Andrea. Topics in noncommutative algebra: The theorem of Campbell, Baker, Hausdorff and Dynkin. Heidelberg: Springer, 2012.
Buscar texto completoDoran, Robert S. y Richard V. Kadison, eds. Operator Algebras, Quantization, and Noncommutative Geometry. Providence, Rhode Island: American Mathematical Society, 2004. http://dx.doi.org/10.1090/conm/365.
Texto completoCapítulos de libros sobre el tema "Noncommutative algebras"
Cuculescu, I. y A. G. Oprea. "Jordan Algebras". En Noncommutative Probability, 293–315. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8374-9_7.
Texto completoArzumanian, Victor y Suren Grigorian. "Noncommutative Uniform Algebras". En Linear Operators in Function Spaces, 101–9. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7250-8_5.
Texto completoCuculescu, I. y A. G. Oprea. "Probability on von Neumann Algebras". En Noncommutative Probability, 53–94. Dordrecht: Springer Netherlands, 1994. http://dx.doi.org/10.1007/978-94-015-8374-9_2.
Texto completoRosenberg, Alexander L. "Noncommutative Affine Schemes". En Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 1–47. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_1.
Texto completoRosenberg, Alexander L. "Noncommutative Local Algebra". En Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 110–41. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_3.
Texto completoRosenberg, Alexander L. "Noncommutative Projective Spectrum". En Noncommutative Algebraic Geometry and Representations of Quantized Algebras, 276–305. Dordrecht: Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8430-2_7.
Texto completoAschieri, Paolo. "Quantum Groups, Quantum Lie Algebras, and Twists". En Noncommutative Spacetimes, 111–32. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-89793-4_7.
Texto completoBratteli, Ola. "Noncommutative vectorfields". En Derivations, Dissipations and Group Actions on C*-algebras, 34–240. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/bfb0098820.
Texto completoGracia-Bondía, José M., Joseph C. Várilly y Héctor Figueroa. "Kreimer-Connes-Moscovici Algebras". En Elements of Noncommutative Geometry, 597–640. Boston, MA: Birkhäuser Boston, 2001. http://dx.doi.org/10.1007/978-1-4612-0005-5_14.
Texto completoVárilly, Joseph C. "The Interface of Noncommutative Geometry and Physics". En Clifford Algebras, 227–42. Boston, MA: Birkhäuser Boston, 2004. http://dx.doi.org/10.1007/978-1-4612-2044-2_15.
Texto completoActas de conferencias sobre el tema "Noncommutative algebras"
VÁRILLY, JOSEPH C. "HOPF ALGEBRAS IN NONCOMMUTATIVE GEOMETRY". En Proceedings of the Summer School. WORLD SCIENTIFIC, 2003. http://dx.doi.org/10.1142/9789812705068_0001.
Texto completoSchauenburg, P. "Weak Hopf algebras and quantum groupoids". En Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-12.
Texto completoKhalkhali, M. y B. Rangipour. "Cyclic cohomology of (extended) Hopf algebras". En Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-5.
Texto completoGomez, X. y S. Majid. "Relating quantum and braided Lie algebras". En Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-6.
Texto completoSzymański, Wojciech. "Quantum lens spaces and principal actions on graph C*-algebras". En Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-18.
Texto completoMORI, IZURU. "NONCOMMUTATIVE PROJECTIVE SCHEMES AND POINT SCHEMES". En Proceedings of the International Conference on Algebras, Modules and Rings. WORLD SCIENTIFIC, 2006. http://dx.doi.org/10.1142/9789812774552_0014.
Texto completoMajewski, Władysław A. y Marcin Marciniak. "On the structure of positive maps between matrix algebras". En Noncommutative Harmonic Analysis with Applications to Probability. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2007. http://dx.doi.org/10.4064/bc78-0-18.
Texto completoWakui, Michihisa. "The coribbon structures of some finite dimensional braided Hopf algebras generated by 2×2-matrix coalgebras". En Noncommutative Geometry and Quantum Groups. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2003. http://dx.doi.org/10.4064/bc61-0-20.
Texto completoLONGO, ROBERTO. "OPERATOR ALGEBRAS AND NONCOMMUTATIVE GEOMETRIC ASPECTS IN CONFORMAL FIELD THEORY". En XVIth International Congress on Mathematical Physics. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814304634_0008.
Texto completoFernández, David y Luis Álvarez–cónsul. "Noncommutative bi-symplectic $\mathbb{N}Q$-algebras of weight 1". En The 10th AIMS Conference on Dynamical Systems, Differential Equations and Applications (Madrid, Spain). American Institute of Mathematical Sciences, 2015. http://dx.doi.org/10.3934/proc.2015.0019.
Texto completo