Artículos de revistas sobre el tema "Non-Volatile SRAM"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Non-Volatile SRAM".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Wang, Ming Qian, Jie Tao Diao, Nan Li, Xi Wang y Kai Bu. "A Study on Reconfiguring On-Chip Cache with Non-Volatile Memory". Applied Mechanics and Materials 644-650 (septiembre de 2014): 3421–25. http://dx.doi.org/10.4028/www.scientific.net/amm.644-650.3421.
Texto completoMispan, Mohd Syafiq, Aiman Zakwan Jidin, Muhammad Raihaan Kamarudin y Haslinah Mohd Nasir. "Lightweight hardware fingerprinting solution using inherent memory in off-the-shelf commodity devices". Indonesian Journal of Electrical Engineering and Computer Science 25, n.º 1 (1 de enero de 2022): 105. http://dx.doi.org/10.11591/ijeecs.v25.i1.pp105-112.
Texto completoAngizi, Shaahin, Navid Khoshavi, Andrew Marshall, Peter Dowben y Deliang Fan. "MeF-RAM: A New Non-Volatile Cache Memory Based on Magneto-Electric FET". ACM Transactions on Design Automation of Electronic Systems 27, n.º 2 (31 de marzo de 2022): 1–18. http://dx.doi.org/10.1145/3484222.
Texto completoVijay, H. M. y V. N. Ramakrishnan. "Radiation effects on memristor-based non-volatile SRAM cells". Journal of Computational Electronics 17, n.º 1 (8 de noviembre de 2017): 279–87. http://dx.doi.org/10.1007/s10825-017-1080-x.
Texto completoSingh, Damyanti, Neeta Pandey y Kirti Gupta. "Process invariant Schmitt Trigger non-volatile 13T1M SRAM cell". Microelectronics Journal 135 (mayo de 2023): 105773. http://dx.doi.org/10.1016/j.mejo.2023.105773.
Texto completoJanniekode, Uma Maheshwar, Rajendra Prasad Somineni, Osamah Ibrahim Khalaf, Malakeh Muhyiddeen Itani, J. Chinna Babu y Ghaida Muttashar Abdulsahib. "A Symmetric Novel 8T3R Non-Volatile SRAM Cell for Embedded Applications". Symmetry 14, n.º 4 (7 de abril de 2022): 768. http://dx.doi.org/10.3390/sym14040768.
Texto completoPriya, G. Lakshmi, Namita Rawat, Abhishek Sanagavarapu, M. Venkatesh y A. Andrew Roobert. "Hybrid Silicon Substrate FinFET-Metal Insulator Metal (MIM) Memristor Based Sense Amplifier Design for the Non-Volatile SRAM Cell". Micromachines 14, n.º 2 (17 de enero de 2023): 232. http://dx.doi.org/10.3390/mi14020232.
Texto completoKhan, Asif. "(Invited) Ferroelectric Field-Effect Transistors as High-Density, Ultra-fast, Embedded Non-Volatile Memories". ECS Meeting Abstracts MA2022-02, n.º 15 (9 de octubre de 2022): 805. http://dx.doi.org/10.1149/ma2022-0215805mtgabs.
Texto completoPan, James N. "Atomic Force High Frequency Phonons Non-volatile Dynamic Random-Access Memory Compatible with Sub-7nm ULSI CMOS Technology". MRS Advances 4, n.º 48 (2019): 2577–84. http://dx.doi.org/10.1557/adv.2019.212.
Texto completoP, Saleem Akram. "Non-Volatile 7T1R SRAM cell design for low voltage applications". International Journal of Emerging Trends in Engineering Research 7, n.º 11 (15 de noviembre de 2019): 704–7. http://dx.doi.org/10.30534/ijeter/2019/487112019.
Texto completoWang, Jinhui, Lina Wang, Haibin Yin, Zikui Wei, Zezhong Yang y Na Gong. "cNV SRAM: CMOS Technology Compatible Non-Volatile SRAM Based Ultra-Low Leakage Energy Hybrid Memory System". IEEE Transactions on Computers 65, n.º 4 (1 de abril de 2016): 1055–67. http://dx.doi.org/10.1109/tc.2014.2375187.
Texto completoJafari, Atousa, Christopher Münch y Mehdi Tahoori. "A Spintronic 2M/7T Computation-in-Memory Cell". Journal of Low Power Electronics and Applications 12, n.º 4 (6 de diciembre de 2022): 63. http://dx.doi.org/10.3390/jlpea12040063.
Texto completoJovanovic, Bojan, Raphael Brum y Lionel Torres. "MTJ-based hybrid storage cells for “normally-off and instant-on” computing". Facta universitatis - series: Electronics and Energetics 28, n.º 3 (2015): 465–76. http://dx.doi.org/10.2298/fuee1503465j.
Texto completoSharma, Parul, Balwinder Raj y Sandeep Singh Gill. "Spintronics Based Non-Volatile MRAM for Intelligent Systems". International Journal on Semantic Web and Information Systems 18, n.º 1 (1 de enero de 2022): 1–16. http://dx.doi.org/10.4018/ijswis.310056.
Texto completoMounica, J. y G. V. Ganesh. "Design Of A Nonvolatile 8T1R SRAM Cell For Instant-On Operation". International Journal of Electrical and Computer Engineering (IJECE) 6, n.º 3 (1 de junio de 2016): 1183. http://dx.doi.org/10.11591/ijece.v6i3.9448.
Texto completoMounica, J. y G. V. Ganesh. "Design Of A Nonvolatile 8T1R SRAM Cell For Instant-On Operation". International Journal of Electrical and Computer Engineering (IJECE) 6, n.º 3 (1 de junio de 2016): 1183. http://dx.doi.org/10.11591/ijece.v6i3.pp1183-1189.
Texto completoGe, Fen, Lei Wang, Ning Wu y Fang Zhou. "A Cache Fill and Migration Policy for STT-RAM-Based Multi-Level Hybrid Cache in 3D CMPs". Electronics 8, n.º 6 (6 de junio de 2019): 639. http://dx.doi.org/10.3390/electronics8060639.
Texto completo., D. Ane Delphin. "DESIGN OF A 4-BIT NON-VOLATILE SRAM USING MAGNETIC TUNNEL JUNCTION". International Journal of Research in Engineering and Technology 05, n.º 16 (25 de mayo de 2016): 186–91. http://dx.doi.org/10.15623/ijret.2016.0516039.
Texto completoLemanov, V. V., Yu V. Frolov, A. A. Iofan y V. K. Yarmarkin. "Some physical and technological aspects of designing of ferroelectric non-volatile SRAM". Microelectronic Engineering 29, n.º 1-4 (diciembre de 1995): 37–40. http://dx.doi.org/10.1016/0167-9317(95)00111-5.
Texto completoItoh, Kiyoo. "Trends in low-voltage embedded-RAM technology". Facta universitatis - series: Electronics and Energetics 15, n.º 1 (2002): 1–12. http://dx.doi.org/10.2298/fuee0201001i.
Texto completoShin, Donghwa. "Design Space Exploration of EEPROM-SRAM Hybrid Non-volatile Counter Considering Energy Consumption and Memory Endurance". IEMEK Journal of Embedded Systems and Applications 11, n.º 4 (31 de agosto de 2016): 201–8. http://dx.doi.org/10.14372/iemek.2016.11.4.201.
Texto completoBazzi, Hussein, Hassen Aziza, Mathieu Moreau y Adnan Harb. "Performances and Stability Analysis of a Novel 8T1R Non-Volatile SRAM (NVSRAM) versus Variability". Journal of Electronic Testing 37, n.º 4 (agosto de 2021): 515–32. http://dx.doi.org/10.1007/s10836-021-05965-x.
Texto completoLin, Zhiting, Yong Wang, Chunyu Peng, Wenjuan Lu, Xuan Li, Xiulong Wu y Junning Chen. "Read‐decoupled 8T1R non‐volatile SRAM with dual‐mode option and high restore yield". Electronics Letters 55, n.º 9 (mayo de 2019): 519–21. http://dx.doi.org/10.1049/el.2019.0295.
Texto completoJunsangsri, Pilin, Jie Han y Fabrizio Lombardi. "Design of a hybrid non-volatile SRAM cell for concurrent SEU detection and correction". Integration 52 (enero de 2016): 156–67. http://dx.doi.org/10.1016/j.vlsi.2015.09.005.
Texto completoAbbasi, Alireza, Farbod Setoudeh, Mohammad Bagher Tavakoli y Ashkan Horri. "A novel design of high performance and robust ultra-low power SRAM cell based on memcapacitor". Nanotechnology 33, n.º 16 (24 de enero de 2022): 165202. http://dx.doi.org/10.1088/1361-6528/ac46d6.
Texto completoBagheriye, Leila, Siroos Toofan, Roghayeh Saeidi, Behzad Zeinali y Farshad Moradi. "A Reduced Store/Restore Energy MRAM-Based SRAM Cell for a Non-Volatile Dynamically Reconfigurable FPGA". IEEE Transactions on Circuits and Systems II: Express Briefs 65, n.º 11 (noviembre de 2018): 1708–12. http://dx.doi.org/10.1109/tcsii.2017.2768409.
Texto completoRani, Khushboo y Hemangee K. Kapoor. "Write-variation aware alternatives to replace SRAM buffers with non-volatile buffers in on-chip interconnects". IET Computers & Digital Techniques 13, n.º 6 (1 de noviembre de 2019): 481–92. http://dx.doi.org/10.1049/iet-cdt.2019.0039.
Texto completoAsad, Arghavan, Mahdi Fazeli, Mohammad Reza Jahed-Motlagh, Mahmood Fathy y Farah Mohammadi. "An Energy-Efficient Reliable Heterogeneous Uncore Architecture for Future 3D Chip-Multiprocessors". Journal of Circuits, Systems and Computers 28, n.º 13 (12 de marzo de 2019): 1950224. http://dx.doi.org/10.1142/s0218126619502244.
Texto completoKanika, R. Sankara Prasad, Nitin Chaturvedi y S. Gurunarayanan. "A low power high speed MTJ based non-volatile SRAM cell for energy harvesting based IoT applications". Integration 65 (marzo de 2019): 43–50. http://dx.doi.org/10.1016/j.vlsi.2018.11.002.
Texto completoHraziia, Adam Makosiej, Giorgio Palma, Jean-Michel Portal, Marc Bocquet, Olivier Thomas, Fabien Clermidy et al. "Operation and stability analysis of bipolar OxRRAM-based Non-Volatile 8T2R SRAM as solution for information back-up". Solid-State Electronics 90 (diciembre de 2013): 99–106. http://dx.doi.org/10.1016/j.sse.2013.02.045.
Texto completoZhang, Honghong y Guoguo Zhang. "Review of Research on Storage Development". Scalable Computing: Practice and Experience 22, n.º 3 (21 de noviembre de 2021): 365–85. http://dx.doi.org/10.12694/scpe.v22i3.1904.
Texto completoLuo, Yandong, Panni Wang y Shimeng Yu. "Accelerating On-Chip Training with Ferroelectric-Based Hybrid Precision Synapse". ACM Journal on Emerging Technologies in Computing Systems 18, n.º 2 (30 de abril de 2022): 1–20. http://dx.doi.org/10.1145/3473461.
Texto completoEscuin, Carlos, Pablo Ibáñez, Denis Navarro, Teresa Monreal, José M. Llabería y Víctor Viñals. "L2C2: Last-level compressed-contents non-volatile cache and a procedure to forecast performance and lifetime". PLOS ONE 18, n.º 2 (7 de febrero de 2023): e0278346. http://dx.doi.org/10.1371/journal.pone.0278346.
Texto completoGarzón, Esteban, Adam Teman y Marco Lanuzza. "Embedded Memories for Cryogenic Applications". Electronics 11, n.º 1 (25 de diciembre de 2021): 61. http://dx.doi.org/10.3390/electronics11010061.
Texto completoZhang, Tiefei, Jixiang Zhu, Jun Fu y Tianzhou Chen. "CWC: A Companion Write Cache for Energy-Aware Multi-Level Spin-Transfer Torque RAM Cache Design". Journal of Circuits, Systems and Computers 24, n.º 06 (26 de mayo de 2015): 1550079. http://dx.doi.org/10.1142/s0218126615500796.
Texto completoPandu, Ratnakar. "CrFe 2O4 - BiFeO3 Perovskite Multiferroic Nanocomposites – A Review". Material Science Research India 11, n.º 2 (24 de diciembre de 2014): 128–45. http://dx.doi.org/10.13005/msri/110206.
Texto completo"Low Power Non-Volatile 7T1M Subthreshold SRAM Cell". Indian Journal of Pure & Applied Physics, 2022. http://dx.doi.org/10.56042/ijpap.v60i12.67455.
Texto completo"Memristor based Non-Volatile Random Access Memory Cell by 45nm CMOS Techology". International Journal of Recent Technology and Engineering 9, n.º 1 (30 de mayo de 2020): 1432–35. http://dx.doi.org/10.35940/ijrte.f8714.059120.
Texto completoRaman, Siddhartha Raman Sundara, S. S. Nibhanupudi y Jaydeep P. Kulkarni. "Enabling In-Memory Computations in Non-Volatile SRAM Designs". IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2022, 1. http://dx.doi.org/10.1109/jetcas.2022.3174148.
Texto completoBazzi, Hussein, Adnan Harb, Hassen Aziza y Mathieu Moreau. "Non-volatile SRAM memory cells based on ReRAM technology". SN Applied Sciences 2, n.º 9 (8 de agosto de 2020). http://dx.doi.org/10.1007/s42452-020-03267-z.
Texto completoBadri, Satya Jaswanth, Mukesh Saini y Neeraj Goel. "Mapi-Pro: An Energy Efficient Memory Mapping Technique for Intermittent Computing". ACM Transactions on Architecture and Code Optimization, 20 de octubre de 2023. http://dx.doi.org/10.1145/3629524.
Texto completoGupta, Pankaj, Kanchan Sharma y Sneha Barnawal. "LOW POWER NON-VOLATILE 11T2R and 13T2R SRAM CELL USING MEMRISTOR". Telecommunications and Radio Engineering, 2021. http://dx.doi.org/10.1615/telecomradeng.2021038115.
Texto completoKumar, C. S. Hemanth y B. S. Kariyappa. "Node Voltage and KCL Model-Based Low Leakage Volatile and Non-Volatile 7T SRAM Cells". IETE Journal of Research, 8 de febrero de 2022, 1–17. http://dx.doi.org/10.1080/03772063.2022.2027279.
Texto completoPrinz, Erwin Josef. "Materials Challenges in Automotive Embedded Non-Volatile Memories". MRS Proceedings 997 (2007). http://dx.doi.org/10.1557/proc-0997-i02-01.
Texto completoSingh, Damyanti, Neeta Pandey y Kirti Gupta. "Schmitt Trigger 12T1M Non-volatile SRAM Cell with Improved Process Variation Tolerance". AEU - International Journal of Electronics and Communications, febrero de 2023, 154573. http://dx.doi.org/10.1016/j.aeue.2023.154573.
Texto completoBazzi, Hussein, Adnan Harb, Hassen Aziza, Mathieu Moreau y Abdallah Kassem. "RRAM-based non-volatile SRAM cell architectures for ultra-low-power applications". Analog Integrated Circuits and Signal Processing, 24 de enero de 2020. http://dx.doi.org/10.1007/s10470-020-01587-z.
Texto completoSivakumar, S., John Jose y Vijaykrishnan Narayanan. "Enhancing Lifetime and Performance of MLC NVM Caches using Embedded Trace buffers". ACM Transactions on Design Automation of Electronic Systems, 16 de abril de 2024. http://dx.doi.org/10.1145/3659102.
Texto completoWang, Jianjian, Jinshun Bi, Gang Liu, Hua Bai, Kai Xi, Bo Li, Sandip Majumdar, Lanlong Ji, Ming Liu y Zhangang Zhang. "Simulations of single event effects on the ferroelectric capacitor-based non-volatile SRAM design". Science China Information Sciences 64, n.º 4 (19 de noviembre de 2020). http://dx.doi.org/10.1007/s11432-019-2854-9.
Texto completoZhao, Dongyan, Yubo Wang, Yanning Chen, Jin Shao, Zhen Fu, Guangyao Wang, Peng Zhang, Cheng Pan y Biao Pan. "Radiation Hardening Design of Non-Volatile Hybrid Flip-Flop Based on Spin Orbit Torque MTJ and SRAM". SPIN, 17 de junio de 2022. http://dx.doi.org/10.1142/s2010324722500163.
Texto completoHyun, Gihwan, Batyrbek Alimkhanuly, Donguk Seo, Minwoo Lee, Junseong Bae, Seunghyun Lee, Shubham Patil et al. "CMOS‐Integrated Ternary Content Addressable Memory using Nanocavity CBRAMs for High Sensing Margin". Small, 12 de abril de 2024. http://dx.doi.org/10.1002/smll.202310943.
Texto completo