Literatura académica sobre el tema "Non photochemical quencing"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Non photochemical quencing".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Non photochemical quencing"
Schreiber, Ulrich y Christian Neubauer. "The Polyphasic Rise of Chlorophyll Fluorescence upon Onset of Strong Continuous Illumination: II. Partial Control by the Photosystem II Donor Side and Possible Ways of Interpretation". Zeitschrift für Naturforschung C 42, n.º 11-12 (1 de diciembre de 1987): 1255–64. http://dx.doi.org/10.1515/znc-1987-11-1218.
Texto completoBilger, W. y U. Schreiber. "Modulation of Millisecond Chlorophyll Luminescence by Non-Photochemical Fluorescence Quenching". Zeitschrift für Naturforschung C 44, n.º 11-12 (1 de diciembre de 1989): 966–70. http://dx.doi.org/10.1515/znc-1989-11-1215.
Texto completoCorrea-Galvis, Viviana, Petra Redekop, Katharine Guan, Annika Griess, Thuy B. Truong, Setsuko Wakao, Krishna K. Niyogi y Peter Jahns. "Photosystem II Subunit PsbS Is Involved in the Induction of LHCSR Protein-dependent Energy Dissipation in Chlamydomonas reinhardtii". Journal of Biological Chemistry 291, n.º 33 (29 de junio de 2016): 17478–87. http://dx.doi.org/10.1074/jbc.m116.737312.
Texto completoHashim, Mohd Akmal, Sharir Aizat Kamaruddin, Mun Fei Yam, Ahmad Suhail Khazali, Khairunnisa Ahmad Kamil, Nor Atikah Husna Ahmad Nasir y Murray T. Brown. "Effects of Diuron, Terbuthylazine and Isoproturon on Photochemical and Non-Photochemical Quenching of Ectocarpus siliculosus". IOP Conference Series: Earth and Environmental Science 1019, n.º 1 (1 de abril de 2022): 012015. http://dx.doi.org/10.1088/1755-1315/1019/1/012015.
Texto completoKitao, Mitsutoshi, Hiroyuki Tobita, Satoshi Kitaoka, Hisanori Harayama, Kenichi Yazaki, Masabumi Komatsu, Evgenios Agathokleous y Takayoshi Koike. "Light Energy Partitioning under Various Environmental Stresses Combined with Elevated CO2 in Three Deciduous Broadleaf Tree Species in Japan". Climate 7, n.º 6 (3 de junio de 2019): 79. http://dx.doi.org/10.3390/cli7060079.
Texto completoNeubauer, Christian y Ulrich Schreiber. "Photochemical and Non-Photochemical Quenching of Chlorophyll Fluorescence Induced by Hydrogen Peroxide". Zeitschrift für Naturforschung C 44, n.º 3-4 (1 de abril de 1989): 262–70. http://dx.doi.org/10.1515/znc-1989-3-415.
Texto completoLaisk, A. y V. Oja. "Alteration of photosystem II properties with non-photochemical excitation quenching". Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 355, n.º 1402 (29 de octubre de 2000): 1405–18. http://dx.doi.org/10.1098/rstb.2000.0702.
Texto completoGruber, J. Michael, Pengqi Xu, Jevgenij Chmeliov, Tjaart P. J. Krüger, Maxime T. A. Alexandre, Leonas Valkunas, Roberta Croce y Rienk van Grondelle. "Dynamic quenching in single photosystem II supercomplexes". Physical Chemistry Chemical Physics 18, n.º 37 (2016): 25852–60. http://dx.doi.org/10.1039/c6cp05493e.
Texto completoNosalewicz, Artur, Karolina Okoń y Maria Skorupka. "Non-Photochemical Quenching under Drought and Fluctuating Light". International Journal of Molecular Sciences 23, n.º 9 (6 de mayo de 2022): 5182. http://dx.doi.org/10.3390/ijms23095182.
Texto completoKarapetyan, N. V. "Non-photochemical quenching of fluorescence in cyanobacteria". Biochemistry (Moscow) 72, n.º 10 (octubre de 2007): 1127–35. http://dx.doi.org/10.1134/s0006297907100100.
Texto completoTesis sobre el tema "Non photochemical quencing"
Yokoyama, Ryo. "Functional Link Between Photoprotection Mechanisms and Thylakoid Structures in Plants". 京都大学 (Kyoto University), 2017. http://hdl.handle.net/2433/225440.
Texto completoJohansson, Jänkänpää Hanna. "Stress responses of Arabidopsis plants with a varying level of non-photochemical quenching". Doctoral thesis, Umeå universitet, Institutionen för fysiologisk botanik, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-48566.
Texto completoÖverskottsenergi kan vara skadligt för en växts membran och fotosynteskomplex. Vid överskott av solenergi blir fotosystemen mättade och växten behöver därför ett sätt för att göra sig av med all överskottsenergi, detta kallas för ”icke-fotokemisk quenching” (NPQ). Fotokemisk quenching (fotosyntes), NPQ och fluoresens är tre alternativa vägar för exalterade klorofyller. PsbS är involverad i NPQ och associerar med fotosystem II. De resultat som presenteras i denna avhandling kommer från studier av modellväxten Arabidopsis thaliana (Backtrav), i huvudsak gjorda på vildtypen i jämförelse med en mutant som saknar PsbS (npq4) och en transgen som överuttrycker PsbS (oePsbS). Vi har försökt att undersöka kopplingen mellan ljus- och herbivoristress och visar här att mängden PsbS påverkar både en specialist (Plutella) och en generalist (Spodoptera) insekt vid val av föda, samt Plutella även vid äggläggning. Växternas nivå av PsbS visade sig även påverka metabolomet och transkriptomet, och vi fann en uppreglering av gener i biosyntesen för jasmonat samt mer av själva hormonet jasmonat i npq4 växter efter herbivori. Eftersom vi har gjort många av experimenten ute i fält har vi även karakteriserat en typisk Arabidopsis växt i fält samt hur denna skiljer sig från den vanligt använda lab-växten. Dessutom har vi även undersökt naturlig variation av NPQ av Arabidopsis både i fält och på lab och resultaten visar, till vår förvåning, att det inte går att finna någon korrelation mellan dessa.
Marshall, H. L. "Photoinhibition of primary production in marine phytoplankton : modelling photon damage and non-photochemical quenching". Thesis, Swansea University, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.638011.
Texto completoTaddei, Lucilla. "The role of the LHCX light-harvesting complex protein family in diatom photoprotection". Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066219/document.
Texto completoDiatoms dominate phytoplanktonic communities in contemporary oceans, contributing to 20% of global primary productivity. In their extremely variable environment, diatoms are especially efficient in adjusting their photosynthetic activity by dissipating as heat the light energy absorbed in excess, through a process called “Non-Photochemical Quenching of chlorophyll fluorescence”, (NPQ). In the model diatom Phaeodactylum tricornutum, it has been shown that LHCX1, a photosynthetic antenna-related gene, is involved in the NPQ process. Through integrated approaches of genetics, molecular biology, biochemistry, study of the kinetics of chlorophyll fluorescence yields and ultrafast spectroscopy, I studied the role of the LHCX family in the photoprotection activity of P. tricornutum. I first correlated a differential regulation of the 4 P. tricornutum LHCX genes with different dynamics of NPQ and photosynthetic activity, in different light and nutrient conditions. By localizing the LHCXs in fractioned photosynthetic complexes and the different sites of energy dissipation, I was able to propose a model of dynamic regulation of NPQ capacity involving mainly the LHCX1 in the reaction centers, during short-term high light responses. During prolonged high light stress, the quenching occurs mainly in the antennas, potentially mediated by the LHCX3 isoform. Finally, using photosynthetic parameters, I screened a series of transgenic lines putatively deregulated in their LHCX amount, and I identified lines with altered NPQ, which could represent novel investigation tools. Altogether, this work highlighted the functional diversification and the importance of the LHCX protein family in the fine-tuning of light harvesting and photoprotection capacity, possibly contributing to explain diatoms success in their highly fluctuating environment
Cendrero, Mateo Maria del Pilar. "Chlorophyll Fluorescence Response to Water and Nitrogen Deficit". Diss., The University of Arizona, 2013. http://hdl.handle.net/10150/312504.
Texto completoPaul, Suman [Verfasser], Alfred R. [Akademischer Betreuer] Holzwarth y Claus A. M. [Akademischer Betreuer] Seidel. "Non-photochemical quenching mechanisms in plants - light induced reorganization of the thylakoid membrane / Suman Paul. Gutachter: Alfred R. Holzwarth ; Claus A. M. Seidel". Düsseldorf : Universitäts- und Landesbibliothek der Heinrich-Heine-Universität Düsseldorf, 2014. http://d-nb.info/1052993710/34.
Texto completoHernández-Prieto, Miguel Angel. "The Small Cab-like Proteins in the cyanobacterium Synechocystis sp. PCC 6803". Doctoral thesis, Umeå universitet, Kemi, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-25886.
Texto completoGiossi, Chiara. "Photoacclimation and photoprotection strategies in siphonous green algae of the order Bryopsidales (Codium tomentosum and Bryopsis plumosa)". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/19835/.
Texto completoRousso, Benny Z. "Optimization of cyanobacteria bloom management through improved forecasting models and optical sensors". Thesis, Griffith University, 2022. http://hdl.handle.net/10072/412995.
Texto completoThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Eng & Built Env
Science, Environment, Engineering and Technology
Full Text
Wilson, Flore Adjélé. "Étude du mécanisme de photoprotection lié à l’Orange Carotenoid Protein et ses homologues chez les cyanobactéries". Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS503/document.
Texto completoPhotosynthetic organisms use light energy from the sun in order to perform photosynthesis and to convert solar energy into chemical energy. Absorbance of excess light energy beyond what can be consumed in photosynthesis is dangerous for these organisms. Reactive oxygen species (ROS) are formed at the reaction centers and collecting light antennas inducing photooxidative damage which can lead to cell death. In cyanobacteria, one of these photoprotective mechanisms consists to reduce the amount of energy arriving to the reaction centers by thermal dissipation of the excess absorbed energy. Energy dissipation is accompanied by a decrease of Photosystem II-related fluorescence emission called non-photochemical quenching (NPQ). The soluble Orange Carotenoid Protein (OCPo) is essential for this photoprotective mechanism. The OCP is the first photo-active protein with a carotenoid known as light intensity sensor and acts as energy quencher of the phycobilisome (PB), the extra-membrane antenna of cyanobacteria. Structural changes occur when the OCPo absorbs a strong blue-green light leading to a red active form (OCPr). The N-terminal domain of OCPr burrows into the two external trimers of the core basal APC cylinders of the PB and increases thermal energy dissipation at the level of antenna. The OCP has an additional function in photoprotection as oxygen singlet quencher protecting cells from oxidative stress. Under low light conditions, to recover the full antenna capacity, a second protein is needed, the "Fluorescence Recovery Protein" (FRP), whose role is to detach the OCPr from the PB and accelerate its conversion into an inactive OCPo. In this manuscript, I will review the knowledge about the OCP, since the discovery of the mechanism and its characterization to the latest advances on the OCP-related-NPQ mechanism in cyanobacteria
Libros sobre el tema "Non photochemical quencing"
Demmig-Adams, Barbara, Gyozo Garab, William Adams III y Govindjee, eds. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9032-1.
Texto completoDemmig-Adams, Barbara, Govindjee, Gyozo Garab y William Adams III. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Ingramcontent, 2014.
Buscar texto completoDemmig-Adams, Barbara, Govindjee, William Adams III y Gyözö Garab. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Springer, 2014.
Buscar texto completoDemmig-Adams, Barbara, Govindjee, Gyozo Garab y Adams William III. Non-Photochemical Quenching and Energy Dissipation in Plants, Algae and Cyanobacteria. Springer Netherlands, 2016.
Buscar texto completoCapítulos de libros sobre el tema "Non photochemical quencing"
Brooks, Matthew D., Stefan Jansson y Krishna K. Niyogi. "PsbS-Dependent Non-Photochemical Quenching". En Advances in Photosynthesis and Respiration, 297–314. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9032-1_13.
Texto completoKrüger, Tjaart P. J., Cristian Ilioaia, Peter Horton, Maxime T. A. Alexandre y Rienk van Grondelle. "How Protein Disorder Controls Non-Photochemical Fluorescence Quenching". En Advances in Photosynthesis and Respiration, 157–85. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9032-1_6.
Texto completoManca, Vincenzo, Roberto Pagliarini y Simone Zorzan. "Toward an MP Model of Non-Photochemical Quenching". En Membrane Computing, 299–310. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-95885-7_22.
Texto completoAbasova, Leyla, Clemence Boulay, Imre Vass y Diana Kirilovsky. "Non-photochemical-quenching Mechanisms in the Cyanobacterium Thermosynechococcus elongatus". En Photosynthesis. Energy from the Sun, 993–96. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6709-9_216.
Texto completoBüchel, Claudia. "Fucoxanthin-Chlorophyll-Proteins and Non-Photochemical Fluorescence Quenching of Diatoms". En Advances in Photosynthesis and Respiration, 259–75. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9032-1_11.
Texto completoDemmig-Adams, Barbara, Seok-Chan Koh, Christopher M. Cohu, Onno Muller, Jared J. Stewart y William W. Adams. "Non-Photochemical Fluorescence Quenching in Contrasting Plant Species and Environments". En Advances in Photosynthesis and Respiration, 531–52. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9032-1_24.
Texto completoPolívka, Tomáš y Harry A. Frank. "Spectroscopic Investigation of Carotenoids Involved in Non-Photochemical Fluorescence Quenching". En Advances in Photosynthesis and Respiration, 203–27. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-017-9032-1_8.
Texto completoMelø, Thor Bernt. "Non-Photochemical Fluorescence Quenching in Avena Sativa at Subambient Temperatures". En Photosynthesis: Mechanisms and Effects, 2293–96. Dordrecht: Springer Netherlands, 1998. http://dx.doi.org/10.1007/978-94-011-3953-3_537.
Texto completoKaňa, Radek, Eva Kotabová y Ondřej Prášil. "Presence of Flexible Non-Photochemical Quenching in Cryptophytes (Rhodomonas Salina)". En Advanced Topics in Science and Technology in China, 489–92. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-32034-7_103.
Texto completoD’Ambrosio, N., C. R. Guadagno y A. Virzo De Santo. "Is qE Always the Major Component of Non-photochemical Quenching?" En Photosynthesis. Energy from the Sun, 1001–4. Dordrecht: Springer Netherlands, 2008. http://dx.doi.org/10.1007/978-1-4020-6709-9_218.
Texto completoActas de conferencias sobre el tema "Non photochemical quencing"
Sukhova, E. M. y V. S. Sukhov. "Optical model of the distribution of non-photochemical quenching in a sheet". En IX Congress of society physiologists of plants of Russia "Plant physiology is the basis for creating plants of the future. Kazan University Press, 2019. http://dx.doi.org/10.26907/978-5-00130-204-9-2019-421.
Texto completode la Cruz Valbuena, Gabriel Jose, Franco Valduga De Almeida Camargo, Rocio Borrego Varillas, Federico Perozeni, Cosimo DaAndrea, Matteo Ballottari y Giulio Cerullo. "Molecular Mechanism of Non-Photochemical Quenching in LHCSR3 Protein of Chlamydomonas Reindhartii". En 2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC). IEEE, 2019. http://dx.doi.org/10.1109/cleoe-eqec.2019.8872630.
Texto completoAmarie, Sergiu, Andreas Dreuw, Josef Wachtveitl, Tiago Barros, Jörg Standfuss y Werner Kühlbrandt. "Molecular basis of Non-Photochemical Quenching (NPQ); The Role of the Major Light-Harvesting Complex LHC II". En International Conference on Ultrafast Phenomena. Washington, D.C.: OSA, 2006. http://dx.doi.org/10.1364/up.2006.mh11.
Texto completo