Artículos de revistas sobre el tema "Non-parametric learning"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Non-parametric learning".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Liu, Bing, Shi-Xiong Xia y Yong Zhou. "Unsupervised non-parametric kernel learning algorithm". Knowledge-Based Systems 44 (mayo de 2013): 1–9. http://dx.doi.org/10.1016/j.knosys.2012.12.008.
Texto completoEsser, Pascal, Maximilian Fleissner y Debarghya Ghoshdastidar. "Non-parametric Representation Learning with Kernels". Proceedings of the AAAI Conference on Artificial Intelligence 38, n.º 11 (24 de marzo de 2024): 11910–18. http://dx.doi.org/10.1609/aaai.v38i11.29077.
Texto completoCruz, David Luviano, Francesco José García Luna y Luis Asunción Pérez Domínguez. "Multiagent reinforcement learning using Non-Parametric Approximation". Respuestas 23, n.º 2 (1 de julio de 2018): 53–61. http://dx.doi.org/10.22463/0122820x.1738.
Texto completoKhadse, Vijay M., Parikshit Narendra Mahalle y Gitanjali R. Shinde. "Statistical Study of Machine Learning Algorithms Using Parametric and Non-Parametric Tests". International Journal of Ambient Computing and Intelligence 11, n.º 3 (julio de 2020): 80–105. http://dx.doi.org/10.4018/ijaci.2020070105.
Texto completoYoa, Seungdong, Jinyoung Park y Hyunwoo J. Kim. "Learning Non-Parametric Surrogate Losses With Correlated Gradients". IEEE Access 9 (2021): 141199–209. http://dx.doi.org/10.1109/access.2021.3120092.
Texto completoRutkowski, Leszek. "Non-parametric learning algorithms in time-varying environments". Signal Processing 18, n.º 2 (octubre de 1989): 129–37. http://dx.doi.org/10.1016/0165-1684(89)90045-5.
Texto completoLiu, Mingming, Bing Liu, Chen Zhang y Wei Sun. "Embedded non-parametric kernel learning for kernel clustering". Multidimensional Systems and Signal Processing 28, n.º 4 (10 de agosto de 2016): 1697–715. http://dx.doi.org/10.1007/s11045-016-0440-1.
Texto completoChen, Changyou, Junping Zhang, Xuefang He y Zhi-Hua Zhou. "Non-Parametric Kernel Learning with robust pairwise constraints". International Journal of Machine Learning and Cybernetics 3, n.º 2 (17 de septiembre de 2011): 83–96. http://dx.doi.org/10.1007/s13042-011-0048-6.
Texto completoKaur, Navdeep, Gautam Kunapuli y Sriraam Natarajan. "Non-parametric learning of lifted Restricted Boltzmann Machines". International Journal of Approximate Reasoning 120 (mayo de 2020): 33–47. http://dx.doi.org/10.1016/j.ijar.2020.01.003.
Texto completoWang, Mingyang, Zhenshan Bing, Xiangtong Yao, Shuai Wang, Huang Kai, Hang Su, Chenguang Yang y Alois Knoll. "Meta-Reinforcement Learning Based on Self-Supervised Task Representation Learning". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 8 (26 de junio de 2023): 10157–65. http://dx.doi.org/10.1609/aaai.v37i8.26210.
Texto completoJung, Hyungjoo y Kwanghoon Sohn. "Single Image Depth Estimation With Integration of Parametric Learning and Non-Parametric Sampling". Journal of Korea Multimedia Society 19, n.º 9 (30 de septiembre de 2016): 1659–68. http://dx.doi.org/10.9717/kmms.2016.19.9.1659.
Texto completoTanwani, Ajay Kumar y Sylvain Calinon. "Small-variance asymptotics for non-parametric online robot learning". International Journal of Robotics Research 38, n.º 1 (11 de diciembre de 2018): 3–22. http://dx.doi.org/10.1177/0278364918816374.
Texto completoZHANG, Chao y Takuya AKASHI. "Two-Side Agreement Learning for Non-Parametric Template Matching". IEICE Transactions on Information and Systems E100.D, n.º 1 (2017): 140–49. http://dx.doi.org/10.1587/transinf.2016edp7233.
Texto completoMa, Yuchao y Hassan Ghasemzadeh. "LabelForest: Non-Parametric Semi-Supervised Learning for Activity Recognition". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 4520–27. http://dx.doi.org/10.1609/aaai.v33i01.33014520.
Texto completoPareek, Parikshit, Chuan Wang y Hung D. Nguyen. "Non-parametric probabilistic load flow using Gaussian process learning". Physica D: Nonlinear Phenomena 424 (octubre de 2021): 132941. http://dx.doi.org/10.1016/j.physd.2021.132941.
Texto completoNaeem, Muhammad y Sohail Asghar. "Structure learning via non-parametric factorized joint likelihood function". Journal of Intelligent & Fuzzy Systems 27, n.º 3 (2014): 1589–99. http://dx.doi.org/10.3233/ifs-141125.
Texto completoKarumanchi, Sisir, Thomas Allen, Tim Bailey y Steve Scheding. "Non-parametric Learning to Aid Path Planning over Slopes". International Journal of Robotics Research 29, n.º 8 (4 de mayo de 2010): 997–1018. http://dx.doi.org/10.1177/0278364910370241.
Texto completoDervilis, Nikolaos, Thomas E. Simpson, David J. Wagg y Keith Worden. "Nonlinear modal analysis via non-parametric machine learning tools". Strain 55, n.º 1 (15 de octubre de 2018): e12297. http://dx.doi.org/10.1111/str.12297.
Texto completoBarut, Emre y Warren B. Powell. "Optimal learning for sequential sampling with non-parametric beliefs". Journal of Global Optimization 58, n.º 3 (3 de marzo de 2013): 517–43. http://dx.doi.org/10.1007/s10898-013-0050-5.
Texto completoLu, Zhong-Lin, Yukai Zhao, Jiajuan Liu y Barbara Dosher. "Non-parametric Hierarchical Bayesian Modeling of the Learning Curve in Perceptual Learning". Journal of Vision 23, n.º 9 (1 de agosto de 2023): 5752. http://dx.doi.org/10.1167/jov.23.9.5752.
Texto completoGaviria-Chavarro, Javier, Isabel Cristina Rojas-Padilla y Yury Vergara-López. "Virtual Learning Object (VLO) for Teaching and Learning Non-Parametric Statistical Methods". Tecné, Episteme y Didaxis: TED, n.º 54 (1 de julio de 2023): 285–302. http://dx.doi.org/10.17227/ted.num54-14155.
Texto completoDeco, Gustavo, Ralph Neuneier y Bernd Schümann. "Non-parametric Data Selection for Neural Learning in Non-stationary Time Series". Neural Networks 10, n.º 3 (abril de 1997): 401–7. http://dx.doi.org/10.1016/s0893-6080(96)00108-6.
Texto completoPal, Dipan K. y Marios Savvides. "Non-Parametric Transformation Networks for Learning General Invariances from Data". Proceedings of the AAAI Conference on Artificial Intelligence 33 (17 de julio de 2019): 4667–74. http://dx.doi.org/10.1609/aaai.v33i01.33014667.
Texto completoKardan, Ahmad Agha y Samira Ghareh Gozlou. "A new non-parametric feature learning for supervised link prediction". International Journal of System Control and Information Processing 1, n.º 4 (2015): 319. http://dx.doi.org/10.1504/ijscip.2015.075877.
Texto completoYang, Z. y C. W. Chan. "Learning control for non-parametric uncertainties with new convergence property". IET Control Theory & Applications 4, n.º 10 (1 de octubre de 2010): 2177–83. http://dx.doi.org/10.1049/iet-cta.2009.0458.
Texto completoWang, Yi, Bin Li, Yang Wang, Fang Chen, Bang Zhang y Zhidong Li. "Robust Bayesian non-parametric dictionary learning with heterogeneous Gaussian noise". Computer Vision and Image Understanding 150 (septiembre de 2016): 31–43. http://dx.doi.org/10.1016/j.cviu.2016.05.015.
Texto completoLi, Der-Chang y Chun-Wu Yeh. "A non-parametric learning algorithm for small manufacturing data sets". Expert Systems with Applications 34, n.º 1 (enero de 2008): 391–98. http://dx.doi.org/10.1016/j.eswa.2006.09.008.
Texto completoPark, Yeonseok, Anthony Choi y Keonwook Kim. "Parametric Estimations Based on Homomorphic Deconvolution for Time of Flight in Sound Source Localization System". Sensors 20, n.º 3 (10 de febrero de 2020): 925. http://dx.doi.org/10.3390/s20030925.
Texto completoSouaissi, Zina, Taha B. M. J. Ouarda y André St-Hilaire. "Non-parametric, semi-parametric, and machine learning models for river temperature frequency analysis at ungauged basins". Ecological Informatics 75 (julio de 2023): 102107. http://dx.doi.org/10.1016/j.ecoinf.2023.102107.
Texto completoMaddalena, Emilio T. y Colin N. Jones. "Learning Non-Parametric Models with Guarantees: A Smooth Lipschitz Regression Approach". IFAC-PapersOnLine 53, n.º 2 (2020): 965–70. http://dx.doi.org/10.1016/j.ifacol.2020.12.1265.
Texto completoWang, Dongqi, Haoran Wei, Zhirui Zhang, Shujian Huang, Jun Xie y Jiajun Chen. "Non-parametric Online Learning from Human Feedback for Neural Machine Translation". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 10 (28 de junio de 2022): 11431–39. http://dx.doi.org/10.1609/aaai.v36i10.21395.
Texto completoTohill, C., L. Ferreira, C. J. Conselice, S. P. Bamford y F. Ferrari. "Quantifying Non-parametric Structure of High-redshift Galaxies with Deep Learning". Astrophysical Journal 916, n.º 1 (1 de julio de 2021): 4. http://dx.doi.org/10.3847/1538-4357/ac033c.
Texto completoWirayasa, I. Ketut Adi, Arko Djajadi, H. Andri Santoso y Eko Indrajit. "Comparison Non-Parametric Machine Learning Algorithms for Prediction of Employee Talent". IJCCS (Indonesian Journal of Computing and Cybernetics Systems) 15, n.º 4 (31 de octubre de 2021): 403. http://dx.doi.org/10.22146/ijccs.69366.
Texto completoSingh, Sumeet, Jonathan Lacotte, Anirudha Majumdar y Marco Pavone. "Risk-sensitive inverse reinforcement learning via semi- and non-parametric methods". International Journal of Robotics Research 37, n.º 13-14 (22 de mayo de 2018): 1713–40. http://dx.doi.org/10.1177/0278364918772017.
Texto completoSyed, Zeeshan, Ilan Rubinfeld, Pat Patton, Jennifer Ritz, Jack Jordan, Andrea Doud y Vic Velanovich. "Using diagnostic codes for risk adjustment: A non-parametric learning approach". Journal of the American College of Surgeons 211, n.º 3 (septiembre de 2010): S99—S100. http://dx.doi.org/10.1016/j.jamcollsurg.2010.06.262.
Texto completoNesa, Nashreen, Tania Ghosh y Indrajit Banerjee. "Non-parametric sequence-based learning approach for outlier detection in IoT". Future Generation Computer Systems 82 (mayo de 2018): 412–21. http://dx.doi.org/10.1016/j.future.2017.11.021.
Texto completoNurul Amelina Nasharuddin y Nurul Shuhada Zamri. "Non-Parametric Machine Learning for Pollinator Image Classification: A Comparative Study". Journal of Advanced Research in Applied Sciences and Engineering Technology 34, n.º 1 (23 de noviembre de 2023): 106–15. http://dx.doi.org/10.37934/araset.34.1.106115.
Texto completoHerranz-Matey, Ivan y Luis Ruiz-Garcia. "New Agricultural Tractor Manufacturer’s Suggested Retail Price (MSRP) Model in Europe". Agriculture 14, n.º 3 (21 de febrero de 2024): 342. http://dx.doi.org/10.3390/agriculture14030342.
Texto completoHakim, Abdul, Nurhikmah H. Nurhikmah, Nur Halisa, Farida Febriati, Latri Aras y Lutfi B. Lutfi. "The Effect of Online Learning on Student Learning Outcomes in Indonesian Subjects". Journal of Innovation in Educational and Cultural Research 4, n.º 1 (21 de enero de 2023): 133–40. http://dx.doi.org/10.46843/jiecr.v4i1.312.
Texto completoShi, Chao y Yu Wang. "Non-parametric machine learning methods for interpolation of spatially varying non-stationary and non-Gaussian geotechnical properties". Geoscience Frontiers 12, n.º 1 (enero de 2021): 339–50. http://dx.doi.org/10.1016/j.gsf.2020.01.011.
Texto completoYang, Z. y C. W. Chan. "Conditional iterative learning control for non-linear systems with non-parametric uncertainties under alignment condition". IET Control Theory & Applications 3, n.º 11 (1 de noviembre de 2009): 1521–27. http://dx.doi.org/10.1049/iet-cta.2008.0532.
Texto completoHuang, Lei, Yuqing Ma y Xianglong Liu. "A general non-parametric active learning framework for classification on multiple manifolds". Pattern Recognition Letters 130 (febrero de 2020): 250–58. http://dx.doi.org/10.1016/j.patrec.2019.01.013.
Texto completoShah, Sonali Rajesh, Abhishek Kaushik, Shubham Sharma y Janice Shah. "Opinion-Mining on Marglish and Devanagari Comments of YouTube Cookery Channels Using Parametric and Non-Parametric Learning Models". Big Data and Cognitive Computing 4, n.º 1 (17 de marzo de 2020): 3. http://dx.doi.org/10.3390/bdcc4010003.
Texto completoAvramidis, Athanassios N. y Arnoud V. den Boer. "Dynamic pricing with finite price sets: a non-parametric approach". Mathematical Methods of Operations Research 94, n.º 1 (28 de junio de 2021): 1–34. http://dx.doi.org/10.1007/s00186-021-00744-y.
Texto completoLi, Wei-Ming y Shi-Ju Ran. "Non-Parametric Semi-Supervised Learning in Many-Body Hilbert Space with Rescaled Logarithmic Fidelity". Mathematics 10, n.º 6 (15 de marzo de 2022): 940. http://dx.doi.org/10.3390/math10060940.
Texto completoLasserre, Marvin, Régis Lebrun y Pierre-Henri Wuillemin. "Learning Continuous High-Dimensional Models using Mutual Information and Copula Bayesian Networks". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 13 (18 de mayo de 2021): 12139–46. http://dx.doi.org/10.1609/aaai.v35i13.17441.
Texto completoGuo, Longwei, Hao Zhu, Yuanxun Lu, Menghua Wu y Xun Cao. "RAFaRe: Learning Robust and Accurate Non-parametric 3D Face Reconstruction from Pseudo 2D&3D Pairs". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 1 (26 de junio de 2023): 719–27. http://dx.doi.org/10.1609/aaai.v37i1.25149.
Texto completoPark, Yeonseok, Anthony Choi y Keonwook Kim. "Single-Channel Multiple-Receiver Sound Source Localization System with Homomorphic Deconvolution and Linear Regression". Sensors 21, n.º 3 (23 de enero de 2021): 760. http://dx.doi.org/10.3390/s21030760.
Texto completoLong, Alexander, Alan Blair y Herke van Hoof. "Fast and Data Efficient Reinforcement Learning from Pixels via Non-parametric Value Approximation". Proceedings of the AAAI Conference on Artificial Intelligence 36, n.º 7 (28 de junio de 2022): 7620–27. http://dx.doi.org/10.1609/aaai.v36i7.20728.
Texto completoLee, SiHun, Kijoo Jang, Haeseong Cho, Haedong Kim y SangJoon Shin. "Parametric non-intrusive model order reduction for flow-fields using unsupervised machine learning". Computer Methods in Applied Mechanics and Engineering 384 (octubre de 2021): 113999. http://dx.doi.org/10.1016/j.cma.2021.113999.
Texto completo