Artículos de revistas sobre el tema "Non-melanoma skin cancer"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: Non-melanoma skin cancer.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Non-melanoma skin cancer".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

TAKAHASHI, Akira. "Chemotherapy for non-melanoma skin cancers". Skin Cancer 24, n.º 3 (2009): 504–9. http://dx.doi.org/10.5227/skincancer.24.504.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kearsley, John H. "Non‐melanoma skin cancer". Medical Journal of Australia 165, n.º 4 (agosto de 1996): 235. http://dx.doi.org/10.5694/j.1326-5377.1996.tb124941.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Czarnecki, D. "Non‐melanoma skin cancer". Medical Journal of Australia 165, n.º 4 (agosto de 1996): 235. http://dx.doi.org/10.5694/j.1326-5377.1996.tb124942.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Marks, Robin. "Non‐melanoma skin cancer". Medical Journal of Australia 165, n.º 4 (agosto de 1996): 235–38. http://dx.doi.org/10.5694/j.1326-5377.1996.tb124943.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Walker, Harriet S. y Joseph Hardwicke. "Non-melanoma skin cancer". Surgery (Oxford) 40, n.º 1 (enero de 2022): 39–45. http://dx.doi.org/10.1016/j.mpsur.2021.11.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Mora, Ricardo G. "Non-Melanoma Skin Cancer". Primary Care: Clinics in Office Practice 16, n.º 3 (septiembre de 1989): 665–84. http://dx.doi.org/10.1016/s0095-4543(21)01335-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Reyes-Álvarez, Marta, Gonzalo Blasco-Morente y Antonia Aránega-Jiménez. "Non-melanoma skin cancer". ACTUALIDAD MEDICA 103, n.º 803 (30 de abril de 2018): 32–38. http://dx.doi.org/10.15568/am.2018.803.re01.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Griffin, Liezel L., Faisal Rehman Ali y John T. Lear. "Non-melanoma skin cancer". Clinical Medicine 16, n.º 1 (febrero de 2016): 62–65. http://dx.doi.org/10.7861/clinmedicine.16-1-62.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

Madan, Vishal, John T. Lear y Rolf-Markus Szeimies. "Non-melanoma skin cancer". Lancet 375, n.º 9715 (febrero de 2010): 673–85. http://dx.doi.org/10.1016/s0140-6736(09)61196-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Harvey, I., D. Shalom, R. M. Marks y S. J. Frankel. "Non-melanoma skin cancer." BMJ 299, n.º 6708 (4 de noviembre de 1989): 1118–20. http://dx.doi.org/10.1136/bmj.299.6708.1118.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Pickles, T. "Non-melanoma skin cancer." BMJ 299, n.º 6713 (9 de diciembre de 1989): 1464. http://dx.doi.org/10.1136/bmj.299.6713.1464-a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Bonamigo, Renan Rangel, André Vicente Esteves de Carvalho, Vanessa Raquel Zaleski Sebastiani, Cristina Martino da Silva y Angela Caroline de Zorzi Pinto. "HLA and skin cancer". Anais Brasileiros de Dermatologia 87, n.º 1 (febrero de 2012): 9–18. http://dx.doi.org/10.1590/s0365-05962012000100001.

Texto completo
Resumen
Skin cancer - melanoma and non melanoma - are common neoplasm with rising incidence over the last decades. It is an important public health problem. Its pathogenesis is not completely understood and the same happens with the genetic factors involved. The genes that encode the HLA are associated with some tumors and they may be responsible for one of the mechanisms that take part in the development of the before mentioned cancers. We have reviewed the literature on the subject of HLA antigens, melanoma and non melanoma skin cancer.
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Andrade, Pedro, Maria Manuel Brites, Ricardo Vieira, Angelina Mariano, José Pedro Reis, Oscar Tellechea y Américo Figueiredo. "Epidemiology of basal cell carcinomas and squamous cell carcinomas in a Department of Dermatology: a 5 year review". Anais Brasileiros de Dermatologia 87, n.º 2 (abril de 2012): 212–19. http://dx.doi.org/10.1590/s0365-05962012000200004.

Texto completo
Resumen
BACKGROUND: Non-melanoma skin cancer, a common designation for both basal cell carcinomas and squamous cell carcinomas, is the most frequent malignant skin neoplasm. OBJECTIVE: Epidemiologic characterization of the population with Non-melanoma skin cancer. METHODS: Retrospective analysis of all patients diagnosed with Non-melanoma skin cancer based on histopathologic analysis of all incisional or excisional skin biopsies performed between 2004 and 2008 in a Department of Dermatology. RESULTS: A total of 3075 Non-melanoma skin cancers were identified, representing 88% of all malignant skin neoplasms (n=3493) diagnosed in the same period. Of those, 68,3% were basal cell carcinomas. Most Non-melanoma skin cancer patients were female and over 60 years old. Of all Non-melanoma skin cancer, 81,7% (n=1443) were located in sun-exposed skin, and represented 95,1% of malignant skin neoplasms in sun-exposed skin. Non-melanoma skin cancer was the most frequent malignant skin neoplasm in most topographic locations, except for abdomen and pelvis - over 95% of all malignant skin neoplasms in the face, neck and scalp were Non-melanoma skin cancer. Basal cell carcinomas were clearly predominant in all locations, except in upper and lower limbs, lower lip and genitals, where squamous cell carcinomas represented respectively 77,7%, 77,4%, 94,7% and 95,3% of the Non-melanoma skin cancers. CONCLUSION: Being the most common skin cancer, Non-melanoma skin cancer should be under constant surveillance, in order to monitor its epidemiologic dynamics, the efficiency of preventive measures and the adaptation of the healthcare resources.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Yeatman, Josephine y Robin Marks. "2. Non‐melanoma skin cancer". Medical Journal of Australia 164, n.º 8 (abril de 1996): 492–96. http://dx.doi.org/10.5694/j.1326-5377.1996.tb122134.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Joseph, Kurian. "Non-Melanoma Skin Cancer - Overview". Current Cancer Therapy Reviews 12, n.º 3 (8 de febrero de 2017): 142–51. http://dx.doi.org/10.2174/1573394713666161214124214.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Lei, Tania Nicole Masmas, Gerda Fre, Ulrikke. "Occupational Non-melanoma Skin Cancer". Acta Dermato-Venereologica 81, n.º 6 (1 de diciembre de 2001): 415–17. http://dx.doi.org/10.1080/000155501317208354.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Weinstock, M. A. "Non-melanoma skin cancer mortality". Melanoma Research 6, SUPPLEMENT 1 (septiembre de 1996): S12. http://dx.doi.org/10.1097/00008390-199609001-00031.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Fialová, Alena. "Non-melanoma skin cancers". Onkologie 14, n.º 5 (19 de noviembre de 2020): 233–39. http://dx.doi.org/10.36290/xon.2020.080.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Yang, Xi, Lilit Karapetyan, Na Bo, Hong Wang, Cindy Sander y John M. Kirkwood. "Multiple primary melanoma in association with other personal and family history of cancers." Journal of Clinical Oncology 39, n.º 15_suppl (20 de mayo de 2021): e21559-e21559. http://dx.doi.org/10.1200/jco.2021.39.15_suppl.e21559.

Texto completo
Resumen
e21559 Background: Patients (PTs) with cutaneous melanoma are at increased risk of developing second primary melanoma and non-melanoma skin cancers. The primary aim of this study was to define the association between MPM and personal history of non-melanoma skin cancers and other non-skin cancers. The secondary aim was to evaluate the association between MPM and the presence of other cancers among first-degree relatives (FDRs). Methods: We performed a retrospective case-control study including cases with MPM and controls with single primary melanoma (SPM) from the University of Pittsburgh Cancer Institute Melanoma Center Biological Sample and Nevus Bank. The proportions and percentages of non-melanoma skin cancer, other non-skin cancer, 1st degree family history of melanoma, and 1st degree family history of other non-melanoma cancers were calculated separately for MPM and SPM groups. Fisher’s exact tests were performed to test whether MPM was associated with these variables. For each significant variable, a multivariable logistic regression model was used to test its association with MPM after adjusting for age, gender, melanoma staging, and smoking status. Results: In total, 311 PTs (39.2% men; median age at initial diagnosis 51years) were enrolled, including 194 with SPM (38.6%; 51) and 117 with MPM (39.8%; 48). 28 (9%) of PTs had squamous cell carcinoma (SCC), and 63 (20%) had basal cell carcinoma (BCC). The most common non-skin cancers in the whole cohort were prostate (4.8%), breast (3.8%), hematological (1.9%), colorectal (1.3%), and cervical cancers (1.3%). FDR history of melanoma, non-melanoma skin cancer, and other cancers were positive in 15.4%, 7.1% and 46.3% PTs, respectively. The most common non-skin cancers in FDRs were breast, prostate, lung, colorectal and hematological malignancies. In comparison to PTs with SPM, PTs with MPM were more likely to have SCC (14.5% vs 5.7%, p=0.013) but not BCC and other non-skin cancers. FDRs of PTs with MPM had higher prevalence of melanoma (23.1% vs 10.8%, p=0.005), prostate cancer (31.9% vs 5.3%, p=0.0002) but not other non-melanoma skin and non-skin cancers. In multivariate analysis the association remained significant between MPM and SCC (OR 2.7, 95% CI 1.1-6.6, p=0.032), FDR history of melanoma (OR 2.0, 95% CI 1.03-4.1, p=0.042), and FDR history of prostate cancer (OR 5.6, 95% CI 1.6-20.3, p=0.008). Conclusions: MPM is associated with higher prevalence of SCC and FDR history of melanoma and prostate cancer, but not BCC and other non-melanoma cancers in comparison to SPM.
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Call, Timothy G., Kari G. Rabe, Brewer D. Jerry, Neil E. Kay, Clive S. Zent, Susan M. Schwager, Deborah A. Bowen et al. "Melanoma and Non-Melanoma Skin Cancer in Patients with Chronic Lymphocytic Leukemia." Blood 114, n.º 22 (20 de noviembre de 2009): 1268. http://dx.doi.org/10.1182/blood.v114.22.1268.1268.

Texto completo
Resumen
Abstract Abstract 1268 Poster Board I-290 Purpose There are reports of an increased risk of skin cancers in patients with B-Chronic Lymphocytic Leukemia (CLL). These skin cancers include basal cell and squamous cell carcinoma. This analysis was performed to more completely define the prevalence of skin cancers in patients in the Mayo Clinic Rochester CLL database and to look for contributing factors. Methods The Mayo Clinic Rochester CLL Database includes all patients with a diagnosis of CLL since January 1995 seen in the Division of Hematology and who have signed institutional review board approved consents for research. For this study, 2240 patients were analyzed to compare differences in characteristics between CLL patients with and without skin cancer. Chi-square statistics were used to compare qualitative variables (age categories, gender, referral status, ALC categories, CD38, ZAP-70, IgVH gene mutation status, FISH categories, Rai stage), and t-tests were used for quantitative variables (age at diagnosis, ALC values). Overall survival (OS) and time to first treatment (TFT) analyses were performed with results being displayed using Kaplan-Meier curves and p-values calculated using a log-rank test. Prevalence of melanoma among CLL patients was compared to the age-adjusted prevalence of melanoma in individuals in the Iowa SEER registry. Results Median follow-up for the 2240 patients diagnosed between 1/1/1995 and 8/11/2009 was 4.6 years. In aggregate, 293 (13.1%) patients were found to have non-melanoma skin cancer (squamous cell carcinoma or basal cell carcinoma) cancer. The diagnosis of non-melanoma skin cancer occurred before the CLL diagnosis in 39% and at or after the diagnosis of CLL in 61%. There were 57 (2.5%) cases of melanoma in association with CLL. The diagnosis of melanoma occurred before the CLL diagnosis in 38% and at or after the diagnosis of CLL in 62%.The prevalence of non-melanoma skin cancer and melanoma skin cancer were both higher in non-referred (geographically regional) CLL patients than referred CLL patients (16.6% vs. 11.4%, p<0.001 for non melanoma; 2.0% vs. 3.6%, p=0.03 for melanoma). The prevalence of melanoma in CLL patients was higher than that of age-adjusted prevalence for individuals in the Iowa SEER registry (2.5% vs. 0.03%; p<0.001). We next evaluated the relationship between CLL patients with skin cancer and demographic characteristics, prognostic parameters, and CLL related treatment. The risk of non-melanoma skin cancer in CLL was found to be associated with age (median age at diagnosis with skin cancer 67.6 vs. without skin cancer 63.3, p<0.001) and with sex (males 15.1% vs females 8.9%, p <0.001). There was no statistical significant difference in frequency of non-melanoma skin cancer associated with absolute lymphocyte count (ALC), Rai stage, CD 38, Zap 70, IgVH gene mutation status, FISH, or treatment history. The risk of melanoma in CLL was found to be associated with age at diagnosis (median age with melanoma 69.9 vs. without melanoma 63.8, p=0.002) and CD38 (positive 1.3% vs negative 3.1%, p=0.03). There was no statistically significant difference associated with gender, ALC, Rai stage, Zap 70, IgVH gene mutation status, FISH, or treatment history. Since the presence of skin cancer could be a marker of immune dysregulation we hypothesized skin cancer may be associated with clinical outcome of CLL. Accordingly, we evaluated the relationship between non-melanoma skin cancer and melanoma skin cancer and TFT and OS. Contrary to our hypothesis, TFT (median 6.0 years vs. 4.9; p=0.04) and OS (median 10.8 years vs. 9.7; p=0.02) of patients with non-melanoma skin cancer were both longer than those without non-melanoma skin cancer. No differences in TFT (p=0.06) or OS (p=0.66) were observed among patients with melanoma compared to those without melanoma. Conclusions We find in our cohort of CLL patients a higher prevalence of melanoma than the general population. Risk of melanoma and non-melanoma skin cancer among patients with CLL does not appear to be related to CLL characteristics, with the exception of CD 38, or CLL outcome. The diagnosis of melanoma and non-melanoma skin cancer in patients with CLL does not appear to be a risk factor for either CLL specific outcomes (TFT) or shorter survival. Disclosures Kay: Biogenc-Idec, Celgene, Genentech, genmab: Membership on an entity's Board of Directors or advisory committees; Genentech, Celgene, Hospira, Polyphenon Pharma, Sanofi-Aventis: Research Funding. Zent:Genentech, Bayer, Genzyme, Novartis: Research Funding. Shanafelt:Genentech: Research Funding; Hospira: Membership on an entity's Board of Directors or advisory committees, Research Funding; Polyphenon E International: Research Funding; Celgene: Research Funding; Cephalon: Research Funding; Bayer Health Care Pharmaceuticals: Research Funding.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Lange, Marta, Emilija Vija Plorina, Ilze Lihacova, Aleksandrs Derjabo y Janis Spigulis. "Skin cancer screening – better safe than sorry". SHS Web of Conferences 85 (2020): 02003. http://dx.doi.org/10.1051/shsconf/20208502003.

Texto completo
Resumen
Skin cancer is the most common type of cancers. In Latvia, on average there are approximately 200 new melanoma and 1300 non-melanoma cancer cases per year. Non-melanoma cancers are: Basal Cell Carcinoma, Squamous Cell Carcinoma and others. It is essential to discover skin cancer at an early stage when it is treatable. For this reason, a reliable, non-invasive and quantitative skin cancer screening method is necessary in order to discover skin cancer as early as possible and to help physicians such as general practitioners and dermatologists assign patients to the best treatment as soon as possible. In this article, the current skin cancer incidence as well as the screening situation in Latvia is described and a non-invasive skin screening method is proposed. The results show that this multispectral imaging method with a parameter p′ can distinguish melanoma from melanocytic nevi with sensitivity 75% and specificity 100%. Recommendations on distinguishing henangioma, seborrheic keratosis are described as well.
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Marson, Justin, Aaron Farberg, Alex Glazer, Graham Litchman, Ryan Svoboda, Richard Winkelmann y Darrell Rigel. "Expert Consensus on Sunscreen for the Primary Prevention of Skin Cancer: Results of the Skin Cancer Prevention Working Group Conference". SKIN The Journal of Cutaneous Medicine 5, n.º 3 (21 de mayo de 2021): 190–202. http://dx.doi.org/10.25251/skin.5.3.1.

Texto completo
Resumen
Background: Melanoma and non-melanoma skin cancers (NMSC) are the overall most common type of malignancy. Despite this fact, the use of sunscreen as a primary preventative measure for skin cancer is not ubiquitous. Objective: To review the literature regarding efficacy and safety of sunscreens and to process and condense data into overarching principles to provide guidance to the general public and improve outcomes for melanoma NMSC. Methods: A systematic review of the literature pertaining to sunscreen efficacy in the primary prevention of melanoma and non-melanoma skin cancer, safety in humans and environmental impact was conducted. Following a thorough review of the literature, the Skin Cancer Prevention Working Group (SCPWG), an expert panel consisting of dermatologists with specialized training in melanoma and NMSC diagnosis and management, employed a modified Delphi technique to reach consensus over the development of statements regarding the current level of evidence for sunscreen efficacy and safety. Final statements were only adopted after achieving a supermajority vote >80%. Results: 96 articles were identified for further review and discussion. The SCPWG developed 7 consensus statements regarding the efficacy and safety of sunscreens and their role in the prevention of melanoma and NMSC. Conclusion: The proven benefits of primary skin cancer prevention outweigh the potential/hypothetical risks of sunscreen use, especially given insufficient real-world, prospective data for the discussed risks. As experts in skin health and skin cancer pathophysiology, the SCPWG believes dermatologists are uniquely qualified to lead future studies investigating sunscreen efficacy and safety and should counsel patients and the public on skin cancer primary prevention strategies.
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Barber, Kirk, Gordon E. Searles, Ronald Vender, Hwee Teoh y John Ashkenas. "Non-melanoma Skin Cancer in Canada Chapter 2: Primary Prevention of Non-melanoma Skin Cancer". Journal of Cutaneous Medicine and Surgery 19, n.º 3 (mayo de 2015): 216–26. http://dx.doi.org/10.1177/1203475415576465.

Texto completo
Resumen
Background Non-melanoma skin cancer (NMSC), including basal and squamous cell carcinoma (BCC and SCC), represents the most common malignancy. Objective To provide guidance to Canadian health care practitioners regarding primary prevention of NMSC. Methods Structured literature searches were conducted, using search terms including prevention, sunscreen, and sun prevention factor. All recommendations concern guidance that physicians should regularly discuss with their patients to help establish photoprotection habits. The GRADE system was used to assign strength to each recommendation. Results Ultraviolet exposure is the major modifiable risk factor for NMSC. Aspects of photoprotection, including effective sunscreen use and avoidance of both the midday sun and artificial tanning, are discussed. Several widespread misunderstandings that undermine responsible public health measures related to sun safety are addressed. Conclusions Photoprotection represents both an individual priority and a public health imperative. By providing accurate information during routine patient visits, physicians reinforce the need for ongoing skin cancer prevention.
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Bonn, Dorothy. "Cancer risk after non-melanoma skin cancer". Lancet 352, n.º 9131 (septiembre de 1998): 885. http://dx.doi.org/10.1016/s0140-6736(05)60017-7.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Zalaudek, Iris, David Whiteman, Cliff Rosendahl, Scott W. Menzies, Adèle C. Green, Peter Hersey y Giuseppe Argenziano. "Update on melanoma and non-melanoma skin cancer". Expert Review of Anticancer Therapy 11, n.º 12 (diciembre de 2011): 1829–32. http://dx.doi.org/10.1586/era.11.180.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Antonijevic, Aleksandar, Natasa Rancic, Branislav Tiodorovic, Jasmina Stevanovic, Marijana Krivokapic y Ana Antonijevic. "Morbidity of non-melanoma skin cancer". Praxis medica 46, n.º 3-4 (2017): 31–34. http://dx.doi.org/10.5937/pramed1704031a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Didona, Dario, Giovanni Paolino, Ugo Bottoni y Carmen Cantisani. "Non Melanoma Skin Cancer Pathogenesis Overview". Biomedicines 6, n.º 1 (2 de enero de 2018): 6. http://dx.doi.org/10.3390/biomedicines6010006.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Vu, Khanh, Patricia Tai y Joseph S.K. Au. "Radiotherapy for Non-Melanoma Skin Cancer". Current Cancer Therapy Reviews 12, n.º 2 (29 de diciembre de 2016): 110–23. http://dx.doi.org/10.2174/1573394712666161018113857.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Důra, Miroslav. "Immunotherapy in non-melanoma skin cancer". Onkologie 16, n.º 3 (16 de mayo de 2022): 134–41. http://dx.doi.org/10.36290/xon.2022.027.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Kormi, Seyed Mohammad Amin y Shima Ardehkhani. "Non-melanoma Skin Cancer: Mini Review". Cancer Press 3, n.º 1 (29 de marzo de 2017): 17. http://dx.doi.org/10.15562/tcp.40.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Sand, Michael, Daniel Sand, Peter Altmeyer y Falk G. Bechara. "MicroRNA in non-melanoma skin cancer". Cancer Biomarkers 11, n.º 6 (14 de diciembre de 2012): 253–57. http://dx.doi.org/10.3233/cbm-2012-0274.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Fransen, Marloes, Amalia Karahalios, Niyati Sharma, Dallas R. English, Graham G. Giles y Rodney D. Sinclair. "Non‐melanoma skin cancer in Australia". Medical Journal of Australia 197, n.º 10 (noviembre de 2012): 565–68. http://dx.doi.org/10.5694/mja12.10654.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

A. Currie y Monk. "Welding and non-melanoma skin cancer". Clinical and Experimental Dermatology 25, n.º 1 (enero de 2000): 28–29. http://dx.doi.org/10.1046/j.1365-2230.2000.00565.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Marks, R. "Retinoids for non melanoma skin cancer". Melanoma Research 3 (septiembre de 1993): 6. http://dx.doi.org/10.1097/00008390-199309002-00016.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Lazareth, Victoria. "Management of Non-melanoma Skin Cancer". Seminars in Oncology Nursing 29, n.º 3 (agosto de 2013): 182–94. http://dx.doi.org/10.1016/j.soncn.2013.06.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Wollina, Uwe. "Cetuximab in non-melanoma skin cancer". Expert Opinion on Biological Therapy 12, n.º 7 (23 de abril de 2012): 949–56. http://dx.doi.org/10.1517/14712598.2012.681374.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Stratton, Steven P. "Prevention of non-melanoma skin cancer". Current Oncology Reports 3, n.º 4 (agosto de 2001): 295–300. http://dx.doi.org/10.1007/s11912-001-0080-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Morgado-Águila, Carolina, Guadalupe Gil-Fernández, Orlando Rafael Dávila-Villalobos, Jesús Pérez-Rey, Purificación Rey-Sánchez y Francisco José Rodríguez-Velasco. "Vitamin D serum levels and non-melanoma skin cancer risk". PeerJ 9 (24 de septiembre de 2021): e12234. http://dx.doi.org/10.7717/peerj.12234.

Texto completo
Resumen
Background Skin cancer is one of the common malignancies. There is sufficient evidence that sunlight (ultraviolet radiation) contributes to the development of skin cancer, but there is also evidence that relates adequate serum levels of vitamin D produced on the skin by the action of ultraviolet radiation with the decreased risk of various types of cancers, including skin cancer. The aim of this study was to investigate the association of vitamin D serum levels among patients with non-melanoma skin cancers (basal cell carcinoma and squamous cell carcinoma) and controls. Methods A prospective observational case-control study was conducted in a sample of 84 subjects in Extremadura (Spain). Forty-one patients with histologically diagnosed basal cell carcinomas and squamous cell carcinomas and 43 healthy controls were randomly chosen to assess whether vitamin D (25(OH)D3) serum level, age and sex were related to non-melanoma skin cancer and to determine the possible risk of this type of skin cancer for these variables. Results When analysing serum vitamin D levels, we ensured that all our subjects, both cases and controls, had normal or low serum vitamin D levels, even though the samples were taken during months with the highest solar irradiance in our region. It is striking in our results that there was a higher percentage of subjects with deficits of vitamin D who did not have skin cancer (66%) than patients with deficits with these types of skin cancers (34%). When adjusting the model for age and sex, vitamin D values above 18 ng/ml increased the risk of suffering from non-melanoma skin cancer by nearly 7-fold (aOR: 6.94, 95% CI [1.55–31.11], p = 0.01). Conclusions Despite the controversial data obtained in the literature, our results suggest that lower levels of vitamin D may be related to a reduced incidence of non-melanoma skin cancer.
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Parris, C. N., S. Jezzard, A. Silver, R. MacKie, J. M. McGregor y R. F. Newbold. "Telomerase activity in melanoma and non-melanoma skin cancer". British Journal of Cancer 79, n.º 1 (11 de diciembre de 1998): 47–53. http://dx.doi.org/10.1038/sj.bjc.6690010.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Rees, Judy R., M. Scot Zens, Jiang Gui, Maria O. Celaya, Bruce L. Riddle y Margaret R. Karagas. "Non Melanoma Skin Cancer and Subsequent Cancer Risk". PLoS ONE 9, n.º 6 (17 de junio de 2014): e99674. http://dx.doi.org/10.1371/journal.pone.0099674.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Khan, Huda, Anushka Yadav, Reha Santiago y Sangita Chaudhari. "Automated Non-invasive Diagnosis of Melanoma Skin Cancer using Dermo-scopic Images". ITM Web of Conferences 32 (2020): 03029. http://dx.doi.org/10.1051/itmconf/20203203029.

Texto completo
Resumen
Melanoma skin cancer is one of the deadliest cancers today, the rate of which is rising exponentially. If not detected and treated early, it will most likely spread to other parts of the body. To properly detect melanoma, a skin biopsy is required. This is an invasive technique which is why the need for a diagnosis system that can eradicate the skin biopsy method arises. It is observed that the proposed method is successfully detecting and correctly classifying the malignant and non-malignant skin cancer. Finally, a neural network is used to classify benign and malignant images from the extracted features. Keywords: Melanoma, non-invasive, skin lesion, neural network.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Griffin, Liezel y John Lear. "Photodynamic Therapy and Non-Melanoma Skin Cancer". Cancers 8, n.º 10 (22 de octubre de 2016): 98. http://dx.doi.org/10.3390/cancers8100098.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Denadai, Rafael, Larissa Kirylko y LuísR M. Souto. "Clinicopathological evaluation of non-melanoma skin cancer". Indian Journal of Dermatology 57, n.º 4 (2012): 331. http://dx.doi.org/10.4103/0019-5154.97691.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Fien, Sari M. y Allan R. Oseroff. "Photodynamic Therapy for Non-Melanoma Skin Cancer". Journal of the National Comprehensive Cancer Network 5, n.º 5 (mayo de 2007): 531–40. http://dx.doi.org/10.6004/jnccn.2007.0046.

Texto completo
Resumen
Photodynamic therapy (PDT) involves the administration of a photosensitizing drug and its subsequent activation by light at wave-lengths matching the absorption spectrum of the photosensitizer. Because the skin is readily accessible to light-based therapies, PDT with systemic and particularly with topical agents has become important in treating cutaneous disorders. Topical PDT is indicated for treating actinic keratosis, superficial or thin non-melanoma skin cancer, including some cases of nodular basal cell carcinoma, and some cutaneous lymphomas. Advantages of aminolevulinic acid/methyl aminolevulinate PDT include the possibility of simultaneous treatment of multiple tumors and large surface areas, good cosmesis, and minimal morbidity, such as bleeding, scarring, or infection.
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Gaál, Magdolna, Róbert Kui, Zsolt Hunyadi, Lajos Kemény y Rolland Gyulai. "Fluorescence diagnosis of non-melanoma skin cancer". Orvosi Hetilap 153, n.º 34 (agosto de 2012): 1334–40. http://dx.doi.org/10.1556/oh.2012.29424.

Texto completo
Resumen
Photodynamic therapy involves – in dermatological practice usually exogenous – application of a photosensitizer then activation of accumulated protoporphyrin IX by light with an appropriate wavelength after a short incubation period. It is an evidence based method to treat certain non-melanoma skin cancers. During treatment when the excited protoporphyrin IX returns to base state, reactive oxygen species are formed leading to cell death in rapidly proliferating cells. Fluorescence of excited protoporphyrin IX can be used in diagnostics as well. In ultraviolet light, the photodamaged or neoplastic areas show coral red fluorescence which can clearly be distinguished from the much lower fluorescence of adjacent normal tissue. This process is suitable for exact determination of tumor margins so it can be used for planning surgical procedures or after photodynamic therapy at a follow up visit for the visualization of the therapeutic result. The present article reviews the literature of photodynamic diagnosi that is also used by the authors. Orv. Hetil., 2012, 153, 1334–1340.
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Micali, Giuseppe, Francesco Lacarrubba, Karishma Bhatt y Maria Rita Nasca. "Medical approaches to non-melanoma skin cancer". Expert Review of Anticancer Therapy 13, n.º 12 (diciembre de 2013): 1409–21. http://dx.doi.org/10.1586/14737140.2013.856759.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

Harwood, Catherine A. y Charlotte M. Proby. "Human papillomaviruses and non-melanoma skin cancer". Current Opinion in Infectious Diseases 15, n.º 2 (abril de 2002): 101–14. http://dx.doi.org/10.1097/00001432-200204000-00002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Chen, Andrew C., Gary M. Halliday y Diona L. Damian. "Non-melanoma skin cancer: carcinogenesis and chemoprevention". Pathology 45, n.º 3 (abril de 2013): 331–41. http://dx.doi.org/10.1097/pat.0b013e32835f515c.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Larkö, Olle. "Photodynamic diagnosis of non‐melanoma skin cancer". Australasian Journal of Dermatology 46, s2 (15 de marzo de 2005): S26. http://dx.doi.org/10.1111/j.1440-0960.2004.00114.x-i2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Larkö, Olle. "Photodynamic diagnosis of non‐melanoma skin cancer". Australasian Journal of Dermatology 46, s3 (febrero de 2005): S26. http://dx.doi.org/10.1111/j.1440-0960.2004.00120.x-i1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía