Literatura académica sobre el tema "Non-lymphoid organs"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Non-lymphoid organs".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Non-lymphoid organs"
Jandrić-Kočić, Marijana. "Recirculation of naive T lymphocytes". Medicinski glasnik Specijalne bolnice za bolesti štitaste žlezde i bolesti metabolizma 27, n.º 86 (2022): 25–48. http://dx.doi.org/10.5937/mgiszm2286025j.
Texto completoParker, George A. y Catherine A. Picut. "Immune Functioning in Non lymphoid Organs: The Liver". Toxicologic Pathology 40, n.º 2 (16 de noviembre de 2011): 237–47. http://dx.doi.org/10.1177/0192623311428475.
Texto completoFeizi, Neda, Neda Feizi, Gang Zhang, Latha Halesha, Khodor Abou Daya y Martin H. Oberbarnscheidt. "Tertiary Lymphoid Organs promote allograft rejection". Journal of Immunology 212, n.º 1_Supplement (1 de mayo de 2024): 0321_5062. http://dx.doi.org/10.4049/jimmunol.212.supp.0321.5062.
Texto completoWeninger, Wolfgang, Maté Biro y Rohit Jain. "Leukocyte migration in the interstitial space of non-lymphoid organs". Nature Reviews Immunology 14, n.º 4 (7 de marzo de 2014): 232–46. http://dx.doi.org/10.1038/nri3641.
Texto completoPreziuso, S., GE Magi, S. Mari y G. Renzoni. "Detection of Visna Maedi virus in mesenteric lymph nodes and in other lymphoid tissues of sheep three years after respiratory infection". Veterinární Medicína 58, No. 7 (20 de agosto de 2013): 359–63. http://dx.doi.org/10.17221/6916-vetmed.
Texto completoTkachev, Victor, Scott Nicholas Furlan, E. Lake Potter, Betty H. Zheng, Daniel J. Hunt, Lucrezia Colonna, Agne Taraseviciute et al. "Delineating tissue-specific alloimmunity during acute GVHD". Journal of Immunology 200, n.º 1_Supplement (1 de mayo de 2018): 55.1. http://dx.doi.org/10.4049/jimmunol.200.supp.55.1.
Texto completoHotchkiss, R., M. Hiramatsu, P. Cobb, T. Buchman y I. Karl. "CECAL LIGATION AND PUNCTURE (CLP) IN MICE TRIGGERS APOPTOSIS IN LYMPHOID AND NON-LYMPHOID ORGANS." Shock 5 (junio de 1996): 71. http://dx.doi.org/10.1097/00024382-199606002-00226.
Texto completoJia, Cunxin, Yujie Zhou, Xiaohuan Huang, Xi Peng, Linyan Liu, Linyan Zhou, Li Jin, Hongjuan Shi, Jing Wei y Deshou Wang. "The cellular protein expression of Foxp3 in lymphoid and non-lymphoid organs of Nile tilapia". Fish & Shellfish Immunology 45, n.º 2 (agosto de 2015): 300–306. http://dx.doi.org/10.1016/j.fsi.2015.03.021.
Texto completoFinke, Daniela y Hans Acha-Orbea. "Differential migration ofin vivo primed B and T lymphocytes to lymphoid and non-lymphoid organs". European Journal of Immunology 31, n.º 9 (septiembre de 2001): 2603–11. http://dx.doi.org/10.1002/1521-4141(200109)31:9<2603::aid-immu2603>3.0.co;2-8.
Texto completoSainova, Iskra, Vera Kolyovska, Desislava Drenska, Dimitar Maslarov, Andrey Petrov, Dimitrina Dimitrova-Dikanarova y Tzvetanka Markova. "Production of anti-GM3, anti-GM1, and anti-GD1A antibodies by non-lymphoid cells, tissues, and organs". Pharmacia 71 (1 de noviembre de 2024): 1–8. http://dx.doi.org/10.3897/pharmacia.71.e138022.
Texto completoTesis sobre el tema "Non-lymphoid organs"
Roubanis, Aristeidis. "Investigating the metabolism of regulatory T cells in non-lymphoid tissues using a genetic approach and an in vivo adaptation of SCENITH". Electronic Thesis or Diss., Sorbonne université, 2024. https://accesdistant.sorbonne-universite.fr/login?url=https://theses-intra.sorbonne-universite.fr/2024SORUS321.pdf.
Texto completoRegulation of cellular metabolism is a central element governing the fate and function of T cells. Among T cells, CD4+ Foxp3+ regulatory T cells (Tregs) are critical for the maintenance of self-tolerance and immune homeostasis. Tregs are present in lymphoid tissues where they control immune responses and in various non-lymphoid tissues where they maintain tissue homeostasis. Precursors of Tregs colonising non- lymphoid tissues are present in the spleen and lymph nodes and undergo developmental differentiation steps. However, the mechanisms by which Tregs colonise non-lymphoid tissues and how tissue Tregs metabolically adapt to varying microenvironments across tissues remain poorly understood partly because of experimental difficulties in assessing the metabolic profiles of rare cells in physiological conditions. To investigate the metabolism of Tregs, mice conditionally knocked out for the metabolic checkpoint Liver kinase B1 (LKB1) (cKO) were generated. These mice have a significantly reduced lifespan due to a systemic hyperinflammatory disorder, despite having relatively normal numbers of Tregs in the spleen and lymph nodes. LKB1, primarily known for activating AMPK and modulating mitochondrial metabolism, appears crucial for the colonisation of NLT by Tregs. Further analysis revealed the absence of the mature tissue Treg precursors in the spleen of cKO mice, suggesting a block of tissue Treg differentiation in the absence of LKB1.Recent advances, such as the SCENITH technique, allow the study of the metabolism of rare cells by measuring protein translation as an indicator of energy consumption by flow cytometry. However, this technique traditionally requires cells to be cultured ex vivo or in vitro, which can alter their metabolism. To address this issue, an innovative method derived from SCENITH was implemented to investigate the cellular metabolism of T cells in the spleen and lungs at steady state. Compared to classical SCENITH, this new technique also helps improve cell viability, in particular for Tregs. Results obtained with the in vivo SCENITH revealed that conventional T cells and Tregs share similar metabolic profiles in the spleen and lungs. Notably, lung T cell metabolism relies mainly on oxidative phosphorylation at steady state, while spleen T cells also utilise glycolysis. Additionally, maintaining Foxp3 expression in Tregs is influenced by metabolic inhibitors affecting protein translation and energy availability. Our findings highlight the role of LKB1 in the differentiation and colonisation of tissue Tregs and underscore the importance of metabolic adaptation in tissue Treg differentiation. The new in vivo SCENITH technique may provide valuable insights to assess the metabolic status of rare T cells in their natural environments
Roake, Justin Alan. "Studies on the properties and migration of non-lymphoid dendritic cells". Thesis, University of Oxford, 1992. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.317810.
Texto completoLibros sobre el tema "Non-lymphoid organs"
Smedby, Karin Ekström, Mads Melbye y Hans-Olov Adami. Non-Hodgkin Lymphoma. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780190676827.003.0027.
Texto completoBlaser, Annika Reintam y Adam M. Deane. Normal physiology of the gastrointestinal system. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0172.
Texto completoAlbert, Tyler J. y Erik R. Swenson. The blood cells and blood count. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199600830.003.0265.
Texto completoCapítulos de libros sobre el tema "Non-lymphoid organs"
Rao, Abdul S., Justin A. Roake, Christian P. Larsen, Deborah F. Hankins, Peter J. Morris y Jonathan M. Austyn. "Isolation of Dendritic Leukocytes from Non-Lymphoid Organs". En Advances in Experimental Medicine and Biology, 507–12. Boston, MA: Springer US, 1993. http://dx.doi.org/10.1007/978-1-4615-2930-9_85.
Texto completoWalker, Brian R. "Modulation of glucocorticoid activity by metabolism of steroids in non-lymphoid organs". En Steroid Hormones and the T-Cell Cytokine Profile, 71–99. London: Springer London, 1997. http://dx.doi.org/10.1007/978-1-4471-0931-0_4.
Texto completoKirsch, Brian James, Shu-Jyuan Chang, Michael James Betenbaugh y Anne Le. "Non-Hodgkin Lymphoma Metabolism". En The Heterogeneity of Cancer Metabolism, 103–16. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-65768-0_7.
Texto completoAndrabi, Syedah Asma, Nawab Nashiruddullah, Shafiqur Rahman, Dawoud Aamir y afrin Ara Ahmed. "IMPORTANT NON-ONCOGENIC IMMUNO SUPPRESSIVE VIRAL DISEASES OF CHICKENS". En Futuristic Trends in Agriculture Engineering & Food Sciences Volume 3 Book 3, 88–108. Iterative International Publisher, Selfypage Developers Pvt Ltd, 2024. http://dx.doi.org/10.58532/v3bcag3p1ch8.
Texto completoWoodhouse, Andrew. "Case 38". En Oxford Case Histories in Infectious Diseases and Microbiology, editado por Andrew Woodhouse, 261–66. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198846482.003.0038.
Texto completoSepulveda, Antonia R. "Mucosa-Associated Lymphoid Tissue Lymphomas". En Gastrointestinal Oncology, 803–11. Oxford University PressNew York, NY, 2003. http://dx.doi.org/10.1093/oso/9780195133721.003.0066.
Texto completoNaresh, Kikkeri N. "Gastrointestinal lymphomas". En Oxford Textbook of Medicine, editado por Jack Satsangi, 2892–902. Oxford University Press, 2020. http://dx.doi.org/10.1093/med/9780198746690.003.0301.
Texto completoActas de conferencias sobre el tema "Non-lymphoid organs"
Rosenbluth, Michael J., Wilbur A. Lam y Daniel A. Fletcher. "Contribution of Cell Mechanics to Acute Leukemia". En ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-59881.
Texto completo