Literatura académica sobre el tema "Non-Kähler geometry"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Non-Kähler geometry".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Non-Kähler geometry"
Dai, Song. "Lower order tensors in non-Kähler geometry and non-Kähler geometric flow". Annals of Global Analysis and Geometry 50, n.º 4 (6 de junio de 2016): 395–418. http://dx.doi.org/10.1007/s10455-016-9518-0.
Texto completoBroder, Kyle. "The Schwarz lemma in Kähler and non-Kähler geometry". Asian Journal of Mathematics 27, n.º 1 (2023): 121–34. http://dx.doi.org/10.4310/ajm.2023.v27.n1.a5.
Texto completoFino, Anna y Adriano Tomassini. "Non-Kähler solvmanifolds with generalized Kähler structure". Journal of Symplectic Geometry 7, n.º 2 (2009): 1–14. http://dx.doi.org/10.4310/jsg.2009.v7.n2.a1.
Texto completoVerbitsky, M. S., V. Vuletescu y L. Ornea. "Classification of non-Kähler surfaces and locally conformally Kähler geometry". Russian Mathematical Surveys 76, n.º 2 (1 de abril de 2021): 261–89. http://dx.doi.org/10.1070/rm9858.
Texto completoZheng, Fangyang. "Some recent progress in non-Kähler geometry". Science China Mathematics 62, n.º 11 (22 de mayo de 2019): 2423–34. http://dx.doi.org/10.1007/s11425-019-9528-1.
Texto completoAlessandrini, Lucia y Giovanni Bassanelli. "Positive $$\partial \bar \partial - closed$$ currents and non-Kähler geometrycurrents and non-Kähler geometry". Journal of Geometric Analysis 2, n.º 4 (julio de 1992): 291–316. http://dx.doi.org/10.1007/bf02934583.
Texto completoCortés, Vicente y Liana David. "Twist, elementary deformation and K/K correspondence in generalized geometry". International Journal of Mathematics 31, n.º 10 (septiembre de 2020): 2050078. http://dx.doi.org/10.1142/s0129167x20500780.
Texto completoDunajski, Maciej. "Null Kähler Geometry and Isomonodromic Deformations". Communications in Mathematical Physics 391, n.º 1 (8 de diciembre de 2021): 77–105. http://dx.doi.org/10.1007/s00220-021-04270-0.
Texto completoYANG, BO. "A CHARACTERIZATION OF NONCOMPACT KOISO-TYPE SOLITONS". International Journal of Mathematics 23, n.º 05 (mayo de 2012): 1250054. http://dx.doi.org/10.1142/s0129167x12500541.
Texto completoYau, Shing-Tung. "Existence of canonical metrics in non-Kähler geometry". Notices of the International Congress of Chinese Mathematicians 9, n.º 1 (2021): 1–10. http://dx.doi.org/10.4310/iccm.2021.v9.n1.a1.
Texto completoTesis sobre el tema "Non-Kähler geometry"
Lee, Hwasung. "Strominger's system on non-Kähler hermitian manifolds". Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:d3956c4f-c262-4bbf-8451-8dac35f6abef.
Texto completoProto, Yann. "Geometry of heterotic flux compactifications". Electronic Thesis or Diss., Sorbonne université, 2024. http://www.theses.fr/2024SORUS125.
Texto completoThis thesis delves into recent developments in the study of flux compactifications of the heterotic string theory. We primarily focus on four-dimensional Minkowski compactifications with spacetime supersymmetry, whose underlying six-dimensional geometries are, in the presence of torsion, non-Kähler SU(3) structure manifolds. We develop several methods to analyze these compactifications from both supergravity and worldsheet perspectives. We investigate geometric flows in non-Kähler geometry that play a central role in the study of the Hull-Strominger equations, and elucidate their supersymmetry properties. We present a class of orbifold backgrounds that can be described using torsional linear sigma models with (0,2) worldsheet supersymmetry, and obtain new examples of heterotic flux backgrounds. Finally, we explore the implications of Narain T-duality for the moduli space of torsional heterotic vacua, and find evidence for topology change and Kähler/non-Kähler dualities
Göteman, Malin. "The Complex World of Superstrings : On Semichiral Sigma Models and N=(4,4) Supersymmetry". Doctoral thesis, Uppsala universitet, Teoretisk fysik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-183407.
Texto completoBattisti, Laurent. "Variétés toriques à éventail infini et construction de nouvelles variétés complexes compactes : quotients de groupes de Lie complexes et discrets". Thesis, Aix-Marseille, 2012. http://www.theses.fr/2012AIXM4714/document.
Texto completoIn this thesis we study certain classes of complex compact non-Kähler manifolds. We first look at the class of Kato surfaces. Given a minimal Kato surface S, D the divisor consisting of all rational curves of S and ϖ : Š ͢ S the universal covering of S, we show that Š \ϖ-1 (D) is a Stein manifold. LVMB manifolds are the second class of non-Kähler manifolds that we study here. These complex compact manifolds are obtained as quotient of an open subset U of Pn by a closed Lie subgroup G of (C*)n of dimension m. We reformulate this procedure by replacing U by the choice of a subfan of the fan of Pn and G by a suitable vector subspace of R^{n}. We then build new complex compact non Kähler manifolds by combining a method of Sankaran and the one giving LVMB manifolds. Sankaran considers an open subset U of a toric manifold whose quotient by a discrete group W is a compact manifold. Here, we endow some toric manifold Y with the action of a Lie subgroup G of (C^{*})^{n} such that the quotient X of Y by G is a manifold, and we take the quotient of an open subset of X by a discrete group W similar to Sankaran's one.Finally, we consider OT manifolds, another class of non-Kähler manifolds, and we show that their algebraic dimension is 0. These manifolds are obtained as quotient of an open subset of C^{m} by the semi-direct product of the lattice of integers of a finite field extension K over Q and a subgroup of units of K well-chosen
Knauf, Anke [Verfasser]. "Geometric transitions on non-Kähler manifolds / vorgelegt von Anke Knauf". 2006. http://d-nb.info/979527503/34.
Texto completoLibros sobre el tema "Non-Kähler geometry"
Dinew, Sławomir, Sebastien Picard, Andrei Teleman y Alberto Verjovsky. Complex Non-Kähler Geometry. Editado por Daniele Angella, Leandro Arosio y Eleonora Di Nezza. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2.
Texto completoAngella, Daniele. Cohomological Aspects in Complex Non-Kähler Geometry. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-02441-7.
Texto completoAngella, Daniele. Cohomological Aspects in Complex Non-Kähler Geometry. Springer London, Limited, 2013.
Buscar texto completoAngella, Daniele, Sławomir Dinew, Sebastien Picard, Andrei Teleman, Alberto Verjovsky, Leandro Arosio y Eleonora Di Nezza. Complex Non-Kähler Geometry: Cetraro, Italy 2018. Springer, 2019.
Buscar texto completoCapítulos de libros sobre el tema "Non-Kähler geometry"
Dinew, Sławomir. "Lectures on Pluripotential Theory on Compact Hermitian Manifolds". En Complex Non-Kähler Geometry, 1–56. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_1.
Texto completoPicard, Sébastien. "Calabi–Yau Manifolds with Torsion and Geometric Flows". En Complex Non-Kähler Geometry, 57–120. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_2.
Texto completoTeleman, Andrei. "Non-Kählerian Compact Complex Surfaces". En Complex Non-Kähler Geometry, 121–61. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_3.
Texto completoVerjovsky, Alberto. "Intersection of Quadrics in ℂ n $$\mathbb {C}^n$$ , Moment-Angle Manifolds, Complex Manifolds and Convex Polytopes". En Complex Non-Kähler Geometry, 163–240. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-25883-2_4.
Texto completoTian, Gang. "Kähler-Einstein metrics with non-positive scalar curvature". En Canonical Metrics in Kähler Geometry, 43–56. Basel: Birkhäuser Basel, 2000. http://dx.doi.org/10.1007/978-3-0348-8389-4_5.
Texto completoAngella, Daniele. "Preliminaries on (Almost-)Complex Manifolds". En Cohomological Aspects in Complex Non-Kähler Geometry, 1–63. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_1.
Texto completoAngella, Daniele. "Cohomology of Complex Manifolds". En Cohomological Aspects in Complex Non-Kähler Geometry, 65–94. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_2.
Texto completoAngella, Daniele. "Cohomology of Nilmanifolds". En Cohomological Aspects in Complex Non-Kähler Geometry, 95–150. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_3.
Texto completoAngella, Daniele. "Cohomology of Almost-Complex Manifolds". En Cohomological Aspects in Complex Non-Kähler Geometry, 151–232. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-02441-7_4.
Texto completoLiu, Xu. "Compact Smooth but Non-complex Complements of Complete Kähler Manifolds". En Complex Analysis and Geometry, 235–39. Tokyo: Springer Japan, 2015. http://dx.doi.org/10.1007/978-4-431-55744-9_17.
Texto completo