Artículos de revistas sobre el tema "NMR spectroscopy"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: NMR spectroscopy.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "NMR spectroscopy".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Gainov, Ramil R., Alexander V. Dooglav, Farit G. Vagizov, Ivan N. Pen'kov, Vladimir A. Golovanevskiy, Anna Yu Orlova, Il'ya A. Evlampiev et al. "NQR/NMR and Mössbauer spectroscopy of sulfides: potential and versatility". European Journal of Mineralogy 25, n.º 4 (20 de diciembre de 2013): 569–78. http://dx.doi.org/10.1127/0935-1221/2013/0025-2325.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Kovalenko, Anton D., Alexander A. Pavlov, Ilya D. Ustinovich, Alena S. Kalyakina, Alexander S. Goloveshkin, Łukasz Marciniak, Leonid S. Lepnev et al. "Highly NIR-emitting ytterbium complexes containing 2-(tosylaminobenzylidene)-N-benzoylhydrazone anions: structure in solution and use for bioimaging". Dalton Transactions 50, n.º 11 (2021): 3786–91. http://dx.doi.org/10.1039/d0dt03913f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Soroko, L. M. "Multipulse NMR spectroscopy". Uspekhi Fizicheskih Nauk 156, n.º 12 (1988): 653. http://dx.doi.org/10.3367/ufnr.0156.198812b.0653.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Tycko, R. y S. J. Opella. "Overtone NMR spectroscopy". Journal of Chemical Physics 86, n.º 4 (15 de febrero de 1987): 1761–74. http://dx.doi.org/10.1063/1.452176.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Evilia, Ronald F. "QUANTITATIVE NMR SPECTROSCOPY". Analytical Letters 34, n.º 13 (30 de septiembre de 2001): 2227–36. http://dx.doi.org/10.1081/al-100107290.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Soroko, L. M. "Multipulse NMR spectroscopy". Soviet Physics Uspekhi 31, n.º 12 (31 de diciembre de 1988): 1043–59. http://dx.doi.org/10.1070/pu1988v031n12abeh005658.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Listinsky, Jay J. "Biomolecular NMR Spectroscopy". Radiology 204, n.º 1 (julio de 1997): 100. http://dx.doi.org/10.1148/radiology.204.1.100.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Knowles, Peter. "Biomolecular NMR spectroscopy". Biochemical Education 24, n.º 1 (enero de 1996): 67. http://dx.doi.org/10.1016/s0307-4412(96)80024-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

George Ratcliffe, R., Albrecht Roscher y Yair Shachar-Hill. "Plant NMR spectroscopy". Progress in Nuclear Magnetic Resonance Spectroscopy 39, n.º 4 (diciembre de 2001): 267–300. http://dx.doi.org/10.1016/s0079-6565(01)00035-8.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

Kupče, Eriks, Toshiaki Nishida y Ray Freeman. "Hadamard NMR spectroscopy". Progress in Nuclear Magnetic Resonance Spectroscopy 42, n.º 3-4 (agosto de 2003): 95–122. http://dx.doi.org/10.1016/s0079-6565(03)00022-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Penner, Glenn H. y Xiaolong Liu. "Silver NMR spectroscopy". Progress in Nuclear Magnetic Resonance Spectroscopy 49, n.º 2 (septiembre de 2006): 151–67. http://dx.doi.org/10.1016/j.pnmrs.2006.06.004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Kupče, Eriks y Ray Freeman. "Hyperdimensional NMR spectroscopy". Progress in Nuclear Magnetic Resonance Spectroscopy 52, n.º 1 (enero de 2008): 22–30. http://dx.doi.org/10.1016/j.pnmrs.2007.07.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Howard, Mark J. "Protein NMR spectroscopy". Current Biology 8, n.º 10 (mayo de 1998): R331—R333. http://dx.doi.org/10.1016/s0960-9822(98)70214-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

Munowitz, M. "13C NMR spectroscopy". TrAC Trends in Analytical Chemistry 8, n.º 3 (marzo de 1989): 117. http://dx.doi.org/10.1016/0165-9936(89)85011-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Levitt, Malcolm H. y Thomas A. Frenkiel. "4470014 NMR spectroscopy". Magnetic Resonance Imaging 3, n.º 1 (enero de 1985): ii—iii. http://dx.doi.org/10.1016/0730-725x(85)90027-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Kupče, Ēriks y Ray Freeman. "Hyperdimensional NMR Spectroscopy". Journal of the American Chemical Society 128, n.º 18 (mayo de 2006): 6020–21. http://dx.doi.org/10.1021/ja0609598.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Ingwal, Joanne S. y Robert G. Weiss. "31P NMR spectroscopy". Trends in Cardiovascular Medicine 3, n.º 1 (enero de 1993): 29–37. http://dx.doi.org/10.1016/1050-1738(93)90025-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Hinton, J. F., K. R. Metz y R. W. Briggs. "Thallium NMR spectroscopy". Progress in Nuclear Magnetic Resonance Spectroscopy 20, n.º 5 (enero de 1988): 423–513. http://dx.doi.org/10.1016/0079-6565(88)80005-0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Lickiss, Paul D. "Modern NMR Spectroscopy". Journal of Organometallic Chemistry 332, n.º 3 (octubre de 1987): C21. http://dx.doi.org/10.1016/0022-328x(87)85108-2.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Mikhalev, V. A. "99Tc NMR Spectroscopy". Radiochemistry 47, n.º 4 (julio de 2005): 319–33. http://dx.doi.org/10.1007/s11137-005-0097-3.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Frahm, J. "Why NMR spectroscopy?" NMR in Biomedicine 2, n.º 5-6 (diciembre de 1989): v—vi. http://dx.doi.org/10.1002/nbm.1940020502.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Nicolay, Klaas, Kees P. J. Braun, Robin A. de Graaf, Rick M. Dijkhuizen y Marijn J. Kruiskamp. "Diffusion NMR spectroscopy". NMR in Biomedicine 14, n.º 2 (2001): 94–111. http://dx.doi.org/10.1002/nbm.686.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Hecke, Paul Van y Sabine Van Huffel. "NMR spectroscopy quantitation". NMR in Biomedicine 14, n.º 4 (2001): 223. http://dx.doi.org/10.1002/nbm.696.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Cory, David. "NMR spectroscopy techniques". Concepts in Magnetic Resonance 9, n.º 6 (1997): 431–32. http://dx.doi.org/10.1002/(sici)1099-0534(1997)9:6<431::aid-cmr4>3.0.co;2-#.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Separovic, Frances. "Biological NMR spectroscopy". Concepts in Magnetic Resonance 10, n.º 1 (1998): 57–58. http://dx.doi.org/10.1002/(sici)1099-0534(1998)10:1<57::aid-cmr5>3.0.co;2-v.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Stoica, Petre y Tomas Sundin. "Nonparametric NMR Spectroscopy". Journal of Magnetic Resonance 152, n.º 1 (septiembre de 2001): 57–69. http://dx.doi.org/10.1006/jmre.2001.2377.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

Hinton, J. F. "Thallium NMR spectroscopy". Magnetic Resonance in Chemistry 25, n.º 8 (agosto de 1987): 659–69. http://dx.doi.org/10.1002/mrc.1260250802.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Ordidge, Roger J. "4906932 NMR spectroscopy and NMR imaging". Magnetic Resonance Imaging 9, n.º 3 (enero de 1991): X. http://dx.doi.org/10.1016/0730-725x(91)90478-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Takeda, Kazuyuki, Youta Kobayashi, Yasuto Noda y K. Takegoshi. "Inner-product NMR spectroscopy: A variant of covariance NMR spectroscopy". Journal of Magnetic Resonance 297 (diciembre de 2018): 146–51. http://dx.doi.org/10.1016/j.jmr.2018.10.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Pelzer, Stefanie, Beate Neumann, Hans-Georg Stammler, Nikolai Ignat’ev, Reint Eujen y Berthold Hoge. "Synthesis and Characterization of Tetrakis(pentafluoroethyl)germane". Synthesis 49, n.º 11 (3 de mayo de 2017): 2389–93. http://dx.doi.org/10.1055/s-0036-1589005.

Texto completo
Resumen
This paper describes the synthesis and comprehensive characterization of tetrakis(pentafluoroethyl)germane. In addition to a complete NMR spectroscopic characterization, including the rarely used 73Ge NMR spectroscopy, Ge(C2F5)4 was studied by IR spectroscopy, mass spectrometry as well as X-ray diffraction analysis. A 73Ge NMR investigation as well as an X-ray diffraction study of the related germane Ge(CF3)4 are also included.
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Nascimento, Paloma Andrade Martins, Paulo Lopes Barsanelli, Ana Paula Rebellato, Juliana Azevedo Lima Pallone, Luiz Alberto Colnago y Fabíola Manhas Verbi Pereira. "Time-Domain Nuclear Magnetic Resonance (TD-NMR) and Chemometrics for Determination of Fat Content in Commercial Products of Milk Powder". Journal of AOAC INTERNATIONAL 100, n.º 2 (1 de marzo de 2017): 330–34. http://dx.doi.org/10.5740/jaoacint.16-0408.

Texto completo
Resumen
Abstract This study shows the use of time-domain (TD)-NMR transverse relaxation (T2) data and chemometrics in the nondestructive determination of fat content for powdered food samples such as commercial dried milk products. Most proposed NMR spectroscopy methods for measuring fat content correlate free induction decay or echo intensities with the sample's mass. The need for the sample's mass limits the analytical frequency of NMR determination, because weighing the samples is an additional step in this procedure. Therefore, the method proposed here is based on a multivariate model of T2 decay, measured with Carr-Purcell-Meiboom-Gill pulse sequence and reference values of fat content. The TD-NMR spectroscopy method shows high correlation (r = 0.95) with the lipid content, determined by the standard extraction method of Bligh and Dyer. For comparison, fat content determination was also performed using a multivariate model with near-IR (NIR) spectroscopy, which is also a nondestructive method. The advantages of the proposed TD-NMR methodare that it (1) minimizes toxic residue generation, (2) performs measurements with high analytical frequency (a few seconds per analysis), and (3) does not require sample preparation (such as pelleting, needed for NIR spectroscopy analyses) or weighing the samples.
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Gunawan, Ramdhan y Asep Bayu Dani Nandiyanto. "How to Read and Interpret 1H-NMR and 13C-NMR Spectrums". Indonesian Journal of Science and Technology 6, n.º 2 (15 de mayo de 2021): 267–98. http://dx.doi.org/10.17509/ijost.v6i2.34189.

Texto completo
Resumen
Nuclear magnetic resonance spectroscopy or NMR is a chemical instrument that can be used to evaluate the structure of a chemical compound other than FTIR, GC-MS, and HPLC. NMR spectroscopy commonly used for compound analysis is 1H-NMR and 13C-NMR. Techniques can be used to determine the structure conformation, the number of protons, and the number of carbons in the structure of a chemical compound. So far, there have been many publications related to the use of this spectroscopic technique. However, the steps in reading and interpreting the spectra of both 1H-NMR and 13C-NMR are not described in detail. Thus, in this paper, we described the steps in reading and interpreting the 1H-NMR and 13C-NMR spectra based on the level of difficulties: (1) simple compounds, (2) fairly complex compounds, (3) more complex compounds, and (4) very complex compounds.
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

Pandiselvam, Ravi, Rathnakumar Kaavya, Sergio I. Martinez Monteagudo, V. Divya, Surangna Jain, Anandu Chandra Khanashyam, Anjineyulu Kothakota et al. "Contemporary Developments and Emerging Trends in the Application of Spectroscopy Techniques: A Particular Reference to Coconut (Cocos nucifera L.)". Molecules 27, n.º 10 (19 de mayo de 2022): 3250. http://dx.doi.org/10.3390/molecules27103250.

Texto completo
Resumen
The number of food frauds in coconut-based products is increasing due to higher consumer demands for these products. Rising health consciousness, public awareness and increased concerns about food safety and quality have made authorities and various other certifying agencies focus more on the authentication of coconut products. As the conventional techniques for determining the quality attributes of coconut are destructive and time-consuming, non-destructive testing methods which are accurate, rapid, and easy to perform with no detrimental sampling methods are currently gaining importance. Spectroscopic methods such as nuclear magnetic resonance (NMR), infrared (IR)spectroscopy, mid-infrared (MIR)spectroscopy, near-infrared (NIR) spectroscopy, ultraviolet-visible (UV-VIS) spectroscopy, fluorescence spectroscopy, Fourier-transform infrared spectroscopy (FTIR), and Raman spectroscopy (RS) are gaining in importance for determining the oxidative stability of coconut oil, the adulteration of oils, and the detection of harmful additives, pathogens, and toxins in coconut products and are also employed in deducing the interactions in food constituents, and microbial contaminations. The objective of this review is to provide a comprehensive analysis on the various spectroscopic techniques along with different chemometric approaches for the successful authentication and quality determination of coconut products. The manuscript was prepared by analyzing and compiling the articles that were collected from various databases such as PubMed, Google Scholar, Scopus and ScienceDirect. The spectroscopic techniques in combination with chemometrics were shown to be successful in the authentication of coconut products. RS and NMR spectroscopy techniques proved their utility and accuracy in assessing the changes in coconut oil’s chemical and viscosity profile. FTIR spectroscopy was successfully utilized to analyze the oxidation levels and determine the authenticity of coconut oils. An FT-NIR-based analysis of various coconut samples confirmed the acceptable levels of accuracy in prediction. These non-destructive methods of spectroscopy offer a broad spectrum of applications in food processing industries to detect adulterants. Moreover, the combined chemometrics and spectroscopy detection method is a versatile and accurate measurement for adulterant identification.
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Borba, A., J. P. Vareda, L. Durães, A. Portugal y P. N. Simões. "Spectroscopic characterization of silica aerogels prepared using several precursors – effect on the formation of molecular clusters". New Journal of Chemistry 41, n.º 14 (2017): 6742–59. http://dx.doi.org/10.1039/c7nj01082f.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Szarek, Walter A., B. Mario Pinto y Masaharu Iwakawa. "Nucleoside analogs involving modifications in the carbohydrate ring: nuclear magnetic resonance spectroscopic studies". Canadian Journal of Chemistry 63, n.º 8 (1 de agosto de 1985): 2162–68. http://dx.doi.org/10.1139/v85-355.

Texto completo
Resumen
The concomitant use of 1H nmr and 13C nmr spectroscopy as a probe of structure, stereochemistry, and conformation of several nucleoside analogs derived from 1-oxa-4-thiacyclohexane is described. The 1H nmr spectroscopic properties of an acyclic nucleoside analog derived from uridine are also described.
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

OHUCHI, Muneki y Shizue KOHNO. "Three-dimensional NMR spectroscopy." Journal of Synthetic Organic Chemistry, Japan 48, n.º 6 (1990): 577–86. http://dx.doi.org/10.5059/yukigoseikyokaishi.48.577.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Gronenborn, Angela M. y Tatyana Polenova. "Introduction: Biomolecular NMR Spectroscopy". Chemical Reviews 122, n.º 10 (25 de mayo de 2022): 9265–66. http://dx.doi.org/10.1021/acs.chemrev.2c00142.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Holzgrabe, Ulrike y Michael Bernstein. "Preface: Quantitative NMR spectroscopy". Journal of Pharmaceutical and Biomedical Analysis 215 (junio de 2022): 114787. http://dx.doi.org/10.1016/j.jpba.2022.114787.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Vosegaard, Thomas. "Single-crystal NMR spectroscopy". Progress in Nuclear Magnetic Resonance Spectroscopy 123 (abril de 2021): 51–72. http://dx.doi.org/10.1016/j.pnmrs.2021.01.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

MITSUMORI, Fumiyuki. "In vivo NMR spectroscopy". Journal of Japan Oil Chemists' Society 38, n.º 10 (1989): 783–90. http://dx.doi.org/10.5650/jos1956.38.783.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Mamone, Salvatore, Nasrollah Rezaei-Ghaleh, Felipe Opazo, Christian Griesinger y Stefan Glöggler. "Singlet-filtered NMR spectroscopy". Science Advances 6, n.º 8 (febrero de 2020): eaaz1955. http://dx.doi.org/10.1126/sciadv.aaz1955.

Texto completo
Resumen
Selectively studying parts of proteins and metabolites in tissue with nuclear magnetic resonance promises new insights into molecular structures or diagnostic approaches. Nuclear spin singlet states allow the selection of signals from chemical moieties of interest in proteins or metabolites while suppressing background signal. This selection process is based on the electron-mediated coupling between two nuclear spins and their difference in resonance frequency. We introduce a generalized and versatile pulsed NMR experiment that allows populating singlet states on a broad scale of coupling patterns. This approach allowed us to filter signals from proton pairs in the Alzheimer’s disease–related b-amyloid 40 peptide and in metabolites in brain matter. In particular, for glutamine/glutamate, we have discovered a long-lived state in tissue without the typically required singlet sustaining by radiofrequency irradiation. We believe that these findings will open up new opportunities to study metabolites with a view on future in vivo applications.
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Warren, W., S. Mayr, D. Goswami y A. West. "Laser-enhanced NMR spectroscopy". Science 255, n.º 5052 (27 de marzo de 1992): 1683–85. http://dx.doi.org/10.1126/science.1553555.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Webb, G. A. "Chapter 2. NMR spectroscopy". Annual Reports Section "C" (Physical Chemistry) 89 (1992): 3. http://dx.doi.org/10.1039/pc9928900003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Fesik, S. W. "Isotope-edited NMR spectroscopy". Nature 332, n.º 6167 (abril de 1988): 865–66. http://dx.doi.org/10.1038/332865a0.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

Bachelard, Herman y Ronnitte Badar-Goffer. "NMR Spectroscopy in Neurochemistry". Journal of Neurochemistry 61, n.º 2 (5 de octubre de 2006): 412–19. http://dx.doi.org/10.1111/j.1471-4159.1993.tb02141.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

Parish, David M. y Thomas Szyperski. "Simultaneously Cycled NMR Spectroscopy". Journal of the American Chemical Society 130, n.º 14 (abril de 2008): 4925–33. http://dx.doi.org/10.1021/ja711454e.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

A. Salvatore, B. "Chapter 11. NMR Spectroscopy". Annual Reports Section "B" (Organic Chemistry) 94 (1998): 361. http://dx.doi.org/10.1039/oc094361.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Bai, Shi, Wei Wang y Cecil Dybowski. "Solid State NMR Spectroscopy". Analytical Chemistry 82, n.º 12 (15 de junio de 2010): 4917–24. http://dx.doi.org/10.1021/ac100761m.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Song, Yi-Qiao, Andre Souza, Muthusamy Vembusubramanian, Yiqiao Tang, Kamilla Fellah, Ling Feng y Stacy L. Reeder. "Multiphysics NMR correlation spectroscopy". Journal of Magnetic Resonance 322 (enero de 2021): 106887. http://dx.doi.org/10.1016/j.jmr.2020.106887.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Bharti, Santosh Kumar y Raja Roy. "Quantitative 1H NMR spectroscopy". TrAC Trends in Analytical Chemistry 35 (mayo de 2012): 5–26. http://dx.doi.org/10.1016/j.trac.2012.02.007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía