Literatura académica sobre el tema "Nkx2.2"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Nkx2.2".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Nkx2.2"
Wei, Qiou, W. Keith Miskimins y Robin Miskimins. "Stage-specific Expression of Myelin Basic Protein in Oligodendrocytes Involves Nkx2.2-mediated Repression That Is Relieved by the Sp1 Transcription Factor". Journal of Biological Chemistry 280, n.º 16 (3 de febrero de 2005): 16284–94. http://dx.doi.org/10.1074/jbc.m500491200.
Texto completoSander, M., L. Sussel, J. Conners, D. Scheel, J. Kalamaras, F. Dela Cruz, V. Schwitzgebel, A. Hayes-Jordan y M. German. "Homeobox gene Nkx6.1 lies downstream of Nkx2.2 in the major pathway of beta-cell formation in the pancreas". Development 127, n.º 24 (15 de diciembre de 2000): 5533–40. http://dx.doi.org/10.1242/dev.127.24.5533.
Texto completoKucenas, Sarah, Heather Snell y Bruce Appel. "nkx2.2a promotes specification and differentiation of a myelinating subset of oligodendrocyte lineage cells in zebrafish". Neuron Glia Biology 4, n.º 2 (mayo de 2008): 71–81. http://dx.doi.org/10.1017/s1740925x09990123.
Texto completoQi, Yingchuan, Jun Cai, Yuanyuan Wu, Rui Wu, Jeffrey Lee, Hui Fu, Mahendra Rao, Lori Sussel, John Rubenstein y Mengsheng Qiu. "Control of oligodendrocyte differentiation by the Nkx2.2 homeodomain transcription factor". Development 128, n.º 14 (15 de julio de 2001): 2723–33. http://dx.doi.org/10.1242/dev.128.14.2723.
Texto completoWang, Yu-Cheng, Emerick Gallego-Arteche, Gioia Iezza, Xiaochen Yuan, Mary R. Matli, Su-Pin Choo, Marlene B. Zuraek et al. "Homeodomain transcription factor NKX2.2 functions in immature cells to control enteroendocrine differentiation and is expressed in gastrointestinal neuroendocrine tumors". Endocrine-Related Cancer 16, n.º 1 (marzo de 2009): 267–79. http://dx.doi.org/10.1677/erc-08-0127.
Texto completoSussel, L., J. Kalamaras, D. J. Hartigan-O'Connor, J. J. Meneses, R. A. Pedersen, J. L. Rubenstein y M. S. German. "Mice lacking the homeodomain transcription factor Nkx2.2 have diabetes due to arrested differentiation of pancreatic beta cells". Development 125, n.º 12 (15 de junio de 1998): 2213–21. http://dx.doi.org/10.1242/dev.125.12.2213.
Texto completoFu, Hui, Yingchuan Qi, Min Tan, Jun Cai, Hirohide Takebayashi, Masato Nakafuku, William Richardson y Mengsheng Qiu. "Dual origin of spinal oligodendrocyte progenitors and evidence for the cooperative role of Olig2 and Nkx2.2 in the control of oligodendrocyte differentiation". Development 129, n.º 3 (1 de febrero de 2002): 681–93. http://dx.doi.org/10.1242/dev.129.3.681.
Texto completoGross, Stefanie, Dina Balderes, Jing Liu, Samuel Asfaha, Guoqiang Gu, Timothy C. Wang y Lori Sussel. "Nkx2.2 is expressed in a subset of enteroendocrine cells with expanded lineage potential". American Journal of Physiology-Gastrointestinal and Liver Physiology 309, n.º 12 (15 de diciembre de 2015): G975—G987. http://dx.doi.org/10.1152/ajpgi.00244.2015.
Texto completoHill, Jonathon T., Christina S. Chao, Keith R. Anderson, Fernanda Kaufman, Christopher W. Johnson y Lori Sussel. "Nkx2.2 Activates the Ghrelin Promoter in Pancreatic Islet Cells". Molecular Endocrinology 24, n.º 2 (1 de febrero de 2010): 381–90. http://dx.doi.org/10.1210/me.2009-0360.
Texto completoMariyath, Mubeena P. M., Mehdi H. Shahi, Shirin Farheen, Mohd Tayyab, Nabeela Khanam y Asif Ali. "Novel Homeodomain Transcription Factor Nkx2.2 in the Brain Tumor Development". Current Cancer Drug Targets 20, n.º 5 (5 de junio de 2020): 335–40. http://dx.doi.org/10.2174/1568009618666180102111539.
Texto completoTesis sobre el tema "Nkx2.2"
Falha, Layal. "Implication du facteur de transcription dans Nkx2.2 gliomagenesis". Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20065.
Texto completoGlioblastoma represent the most common primary brain tumor with an overall survival of less than 2 years. These tumors are highly infiltrative and angiogenic and contain a sub population of cancer stem cells. Nkx2.2 is a homeodomain transcription factor which is implicated in the formation of oligodendrocytes during development. Nkx2.2 is central in tumorogenesis of Ewing'sarcoma. Using QPCR and glioma tissue array, we found that Nkx2.2 is highly expressed in glioblastoma. Nkx2.2 was also detected in 3 glioma stem-like cell cultures (neurospheres) where it is co-expressed with stem cell markers such as CD133 and CD15. It was recently proposed that overexpression of Nkx2.2 could induce terminal oligodendrocytic differentiation of glioma stem-like cell and inhibit tumor formation in xenotransplantation (Cancer Res. 2011 Feb 1;71(3):1135-45).To explore this possibility further, we used retroviruses to overexpress Nkx2.2 in our cell cultures. Surprisingly, we found that Nkx2.2, induce glioma stem cell proliferation and had no oligodendrocyte differentiating effect. Microarray analyses confirmed that Nkx2.2 overexpression had no influence in oligodendrocyte differentiation. This analysis further revealed that Nkx2.2 was able to induce a strong expression of YKL40 protein in the supernatant of glioma stem cells and increase YKL-40 promoter activity. YKL-40 is a secreted glycoprotein which is involved in inflammation, angiogenesis and proliferation and which is often associated with a bad prognosis in several cancers. In addition, we performed orthotopic transplantation to explore the role of Nkx2.2 in gliomagenesis in vivo and found that Nkx2.2 did not reduce the aggressiveness of glioblastoma. In the other part of my thesis we used Taqman low-density arrays (TLDA) and individual miRNA QPCR validation to find the microRNA (miRNA) signature in human glioblastoma cell cultures. Then we investigated the role of miRNA in the 3'UTR of Nkx2.2 transcript. Site directed mutagenesis (SDM) and dual-Luciferase reporter assay results showed that the Nkx2.2 expression is downregulated by mir-133b and mir-202
Pravemann, Jana Verfasser] y Hans-Henning [Akademischer Betreuer] [Arnold. "Die Rolle der Transkriptionsfaktoren Nkx2.2 und Nkx2.9 in der Entwicklung des Neuralrohrs: Herstellung einer Nkx2.9 Cre knock-in Mausmutante / Jana Pravemann ; Betreuer: Hans-Henning Arnold". Braunschweig : Technische Universität Braunschweig, 2014. http://d-nb.info/1175820709/34.
Texto completoGuichet, Pierre-Olivier. "Rôle de NKX2-2, NGN2 et DCX dans la prolifération, différenciation et migration des cellules tumorales de glioblastomes". Thesis, Montpellier 2, 2011. http://www.theses.fr/2011MON20143.
Texto completoGlioblastomas (GB) are the most common primary tumors of the CNS and are particularly resistant to radio/chemotherapy. They generally have a solid and infiltrative component. The latter being difficult to remove by surgery will be partly responsible for tumor recurrence. One of the major advances in the field is highlighted in the Gb of subpopulations with features of neural precursors. Cancer cells use specific gene networks to maintain their proliferation and undifferentiated state. One approach to eliminate these cancer cells would be to target transcription factors involved in the proliferation or to force their differentiation. To this end, I studied the role of NKX2.2 and NGN2 from 3 primary multipotent cultures. The results show that NKX2.2 expression in these cultures is necessary for survival, proliferation and ability to form neurospheres. Conversely, overexpression of NGN2 led to massive apoptosis, proliferation arrest with formation of neurons, some of which are electrophysiologically active. A different approach would be to target proteins involved in migration to limit the invasive component. Previous studies have shown a key role of DCX in the migration of young neurons during development. The strong expression of DCX in some Gb led me to study the regulation and the role of this gene. In vitro, the results show that DCX is expressed by a subpopulation of cells. Purification of Dcx+ cells and clonal study has shown that they behave as multipotent progenitors with limited self-renewal capacity. I also found that Dcx+ cells can revert back to a Dcx- state and that DCX is regulated by SHH and NOTCH pathways
岡原, 京平. "糖脂質ガラクトシルセラミドのオリゴデンドロサイト特異的な発現調節機構に関する研究". 京都大学 (Kyoto University), 2014. http://hdl.handle.net/2433/192153.
Texto completoJarrar, Wassan [Verfasser] y Hans-Henning [Akademischer Betreuer] Arnold. "Genetic analysis of Nkx2.2 and Nkx2.9 transcription factors in mouse brain development: specific functions in the hindbrain / Wassan Jarrar ; Betreuer: Hans-Henning Arnold". Braunschweig : Technische Universität Braunschweig, 2014. http://d-nb.info/1175821233/34.
Texto completoDoyle, Michelle Joanne. "Multiple transcriptional activities of NKX2.2 in the embryonic and adult pancreas /". Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2006.
Buscar texto completoTypescript. Includes bibliographical references (leaves 137-151). Free to UCD Anschutz Medical Campus. Online version available via ProQuest Digital Dissertations;
Chao, Christina Seng. "The roles of Nkx2.2 in determination of mouse islet cell fates /". Connect to full text via ProQuest. Limited to UCD Anschutz Medical Campus, 2007.
Buscar texto completoTypescript. Includes bibliographical references (leaves 144-158). Free to UCD affiliates. Online version available via ProQuest Digital Dissertations;
Hill, Katy Victoria. "Regulation of Nkx2.2 gene expression in the vertebrate neural tube : a target of graded Sonic hedgehog signalling". Thesis, University College London (University of London), 2007. http://discovery.ucl.ac.uk/1444785/.
Texto completoWankerl, Ludwig Verfasser] y Gunter [Akademischer Betreuer] [Meister. "Characterization of CAMTA1 and Nkx2.2 in the context of glioblastoma cancer stem cell biology / Ludwig Wankerl. Betreuer: Gunter Meister". Regensburg : Universitätsbibliothek Regensburg, 2016. http://d-nb.info/1083251341/34.
Texto completoKordowich, Simon Verfasser], Ernst A. [Akademischer Betreuer] Wimmer, Ahmed [Akademischer Betreuer] Mansouri, Detlef [Akademischer Betreuer] [Doenecke y Annette [Akademischer Betreuer] Borchers. "Funktionelle Charakterisierung der Transkriptionsfaktoren Nkx2.2 und Arx in der Entwicklung der endokrinen Zellen im murinen Pankreas / Simon Kordowich. Gutachter: Ahmed Mansouri ; Detlef Doenecke ; Annette Borchers. Betreuer: Ernst A. Wimmer". Göttingen : Niedersächsische Staats- und Universitätsbibliothek Göttingen, 2011. http://d-nb.info/1042641218/34.
Texto completoCapítulos de libros sobre el tema "Nkx2.2"
Akazawa, Hiroshi y Issei Komuro. "Cardiac Homeobox Protein Csx/Nkx2.5 and its Associated Proteins". En Cardiovascular Development and Congenital Malformations, 31–36. Malden, Massachusetts, USA: Blackwell Publishing Ltd, 2007. http://dx.doi.org/10.1002/9780470988664.ch8.
Texto completoJay, Patrick Y., Charles I. Berul, Makoto Tanaka, Masao Ishii, Yoshihisa Kurachi y Seigo Izumo. "Cardiac Conduction and Arrhythmia: Insights from Nkx2.5 Mutations in Mouse and Humans". En Novartis Foundation Symposia, 227–41. Chichester, UK: John Wiley & Sons, Ltd, 2008. http://dx.doi.org/10.1002/0470868066.ch14.
Texto completoPonticos, Markella. "The Role of the Homeodomain Transcription Factor Nkx2-5 in the Cardiovascular System". En Advances in Vascular Medicine, 113–30. London: Springer London, 2009. http://dx.doi.org/10.1007/978-1-84882-637-3_7.
Texto completoSchwartz, Robert J., Jorge Sepulveda y Narasimhaswamy S. Belaguli. "Molecular Regulation of Cardiac Myofibrillogenesis: Roles of Serum Response Factor, Nkx2-5, and GATA-4". En Myofibrillogenesis, 103–27. Boston, MA: Birkhäuser Boston, 2002. http://dx.doi.org/10.1007/978-1-4612-0199-1_7.
Texto completoScott, Ian C. "Life Before Nkx2.5". En Current Topics in Developmental Biology, 1–31. Elsevier, 2012. http://dx.doi.org/10.1016/b978-0-12-387786-4.00001-4.
Texto completoMak, Tak W., Josef Penninger, John Roder, Janet Rossant y Mary Saunders. "Nkx2–5". En The Gene Knockout FactsBook, 802–3. Elsevier, 1998. http://dx.doi.org/10.1016/b978-012466044-1/50442-7.
Texto completoGazit, Avihu Z., Susan N. Foerster y Patrick Y. Jay. "NKX2-5 and Congenital Heart Disease". En Epstein's Inborn Errors of Development, 733–39. Oxford University Press, 2016. http://dx.doi.org/10.1093/med/9780199934522.003.0102.
Texto completoMemon, Bushra y Essam M. Abdelalim. "Highly Efficient Differentiation of Human Pluripotent Stem Cells into Pancreatic Progenitors Co-expressing PDX1 and NKX6.1". En Methods in Molecular Biology. New York, NY: Springer US, 2020. http://dx.doi.org/10.1007/7651_2020_323.
Texto completoActas de conferencias sobre el tema "Nkx2.2"
Mucenski, Michael, Michael Bruno, Susan Wert, Joseph Locker y Jeffrey Whitsett. "NKX2.8 Participates In A Regulatory Network In Submucosal Glands And Tracheal Epithelium". En American Thoracic Society 2010 International Conference, May 14-19, 2010 • New Orleans. American Thoracic Society, 2010. http://dx.doi.org/10.1164/ajrccm-conference.2010.181.1_meetingabstracts.a5495.
Texto completoDeMaio, L., A. Banfalvi, P. Flodby, P. Minoo, ED Crandall y Z. Borok. "Nkx2.1-Cre Reporter Mice Demonstrate Alveolar Epithelial-Mesenchymal Transition (EMT)In VivoandIn Vitro." En American Thoracic Society 2009 International Conference, May 15-20, 2009 • San Diego, California. American Thoracic Society, 2009. http://dx.doi.org/10.1164/ajrccm-conference.2009.179.1_meetingabstracts.a5291.
Texto completoLouw, Alison, Marc A. Thomas, Jennet Harvey y Jacqueline M. Bentel. "Abstract 4075: Regulation of NKX3.1 by RMND5 proteins." En Proceedings: AACR 104th Annual Meeting 2013; Apr 6-10, 2013; Washington, DC. American Association for Cancer Research, 2013. http://dx.doi.org/10.1158/1538-7445.am2013-4075.
Texto completoLogan, Monica, Philip Anderson y Sarki Abdulkadir. "Abstract 2734: Genome-wide analysis of direct Nkx3.1 target genes". En Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-2734.
Texto completoLi, Hsin-Jung, Yu-Lueng Shih, Ming-De Yan, Pei-Ning Yu y Ya-Wen Lin. "Abstract 575: NKX6.1 functions as a tumor suppressor in hepatocellular carcinoma". En Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-575.
Texto completoLi, Hsin-Jung, Pei-Ning Yu, Yu-Lueng Shih y Ya-Wen Lin. "Abstract 4108: NKX6.1 suppresses cancer invasion and epithelial-mesenchymal transition in cervical cancer". En Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-4108.
Texto completoMcKissic, Sydika, Meejeon Roh y Sarki Abdulkadir. "Abstract 2401: Loss of Nkx3.1 cooperates with Myc overexpression to promote prostate tumorigenesis". En Proceedings: AACR 102nd Annual Meeting 2011‐‐ Apr 2‐6, 2011; Orlando, FL. American Association for Cancer Research, 2011. http://dx.doi.org/10.1158/1538-7445.am2011-2401.
Texto completoLin, Ya-Wen, Sou-Yi Chang, Chih-Chi Kuo, Cheng-Wen Hsiao, Chih-Hsiung Hsu, Yu-Ching Chou y Yu-Lueng Shih. "Abstract 2575: NKX6.1 hypermethylation predicts the outcome of stage II colorectal cancer patients undergoing chemotherapy". En Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-2575.
Texto completoAnderson, Philip D., Sydika A. McKissic, Monica Logan, Meejeon Roh, Omar Franco, Jie Wang, Irina Doubinskaia et al. "Abstract 2983: Nkx3.1 and c-Myc co-regulate shared target genes involved in prostate cancer". En Proceedings: AACR 103rd Annual Meeting 2012‐‐ Mar 31‐Apr 4, 2012; Chicago, IL. American Association for Cancer Research, 2012. http://dx.doi.org/10.1158/1538-7445.am2012-2983.
Texto completoDecker, Josua, Garima Jain, Philip Harazim, Tina Kießling, Peter Möller y Ralf Marienfeld. "Abstract 1667: Prostatitis related mitogenic stimuli cause loss of NKX3.1: Increased risk for prostate cancer". En Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-1667.
Texto completoInformes sobre el tema "Nkx2.2"
Gelmann, Edward P. NKX3.1 in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, enero de 2003. http://dx.doi.org/10.21236/ada415376.
Texto completoGelmann, Edward P. NKX3.1 In Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, julio de 1999. http://dx.doi.org/10.21236/ada376365.
Texto completoOuyang, Xuesong. Isolation of Target Genes for NKX3.1 in Prostate Carcinogenesis. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2004. http://dx.doi.org/10.21236/ada426046.
Texto completoOuyang, Xuesong. Isolating of Target Genes for NKX3.1 in Prostate Carcinogenesis. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2005. http://dx.doi.org/10.21236/ada437384.
Texto completoGelmann, Edward P. NKX3.1 Genotype and IGF-1 Interact in Prostate Cancer Risk. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2008. http://dx.doi.org/10.21236/ada488982.
Texto completoGelmann, Edward P. NKX3.1 Genotype and IGF-1 Interact in Prostate Cancer Risk. Fort Belvoir, VA: Defense Technical Information Center, mayo de 2010. http://dx.doi.org/10.21236/ada535355.
Texto completoMilbrandt, Jeffrey D. Role of Nkx3.1 Homeodomain Protein in Prostate Carcinogenesis and Differentiation. Fort Belvoir, VA: Defense Technical Information Center, febrero de 2000. http://dx.doi.org/10.21236/ada391011.
Texto completoMuhlbradt, Erin E. Inflammatory Cytokines Induce Ubiquitination and Loss of the Prostate Suppressor Protein NKX3.1. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2008. http://dx.doi.org/10.21236/ada518629.
Texto completoJiao, Jing. Molecular Mechanism of Nkx3.1 Deregulation and Its Function in Murine Pten Prostate Cancer Model. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2005. http://dx.doi.org/10.21236/ada446368.
Texto completoJiao, Jing. Molecular Mechanism of Nkx3.1 Deregulation and its Function in Murine Pten Prostate Cancer Model. Fort Belvoir, VA: Defense Technical Information Center, septiembre de 2006. http://dx.doi.org/10.21236/ada483121.
Texto completo