Índice
Literatura académica sobre el tema "Neuroretinal organoids"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Neuroretinal organoids".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Neuroretinal organoids"
Atac, David, Kevin Maggi, Silke Feil, Jordi Maggi, Elisa Cuevas, Jane C. Sowden, Samuel Koller y Wolfgang Berger. "Identification and Characterization of ATOH7-Regulated Target Genes and Pathways in Human Neuroretinal Development". Cells 13, n.º 13 (3 de julio de 2024): 1142. http://dx.doi.org/10.3390/cells13131142.
Texto completoTakata, Nozomu, Deepti Abbey, Luciano Fiore, Sandra Acosta, Ruopeng Feng, Hyea Jin Gil, Alfonso Lavado et al. "An Eye Organoid Approach Identifies Six3 Suppression of R-spondin 2 as a Critical Step in Mouse Neuroretina Differentiation". Cell Reports 21, n.º 6 (noviembre de 2017): 1534–49. http://dx.doi.org/10.1016/j.celrep.2017.10.041.
Texto completoAfting, Cassian, Tobias Walther, Oliver M. Drozdowski, Christina Schlagheck, Ulrich S. Schwarz, Joachim Wittbrodt y Kerstin Göpfrich. "DNA microbeads for spatio-temporally controlled morphogen release within organoids". Nature Nanotechnology, 9 de septiembre de 2024. http://dx.doi.org/10.1038/s41565-024-01779-y.
Texto completoLiu, Wei, Rupendra Shrestha, Albert Lowe, Xusheng Zhang y Ludovic Spaeth. "Self-formation of concentric zones of telencephalic and ocular tissues and directional retinal ganglion cell axons". eLife 12 (4 de septiembre de 2023). http://dx.doi.org/10.7554/elife.87306.3.
Texto completoIsla-Magrané, Helena, Maddalen Zufiaurre-Seijo, José García-Arumí y Anna Duarri. "All-trans retinoic acid modulates pigmentation, neuroretinal maturation, and corneal transparency in human multiocular organoids". Stem Cell Research & Therapy 13, n.º 1 (28 de julio de 2022). http://dx.doi.org/10.1186/s13287-022-03053-1.
Texto completoTesis sobre el tema "Neuroretinal organoids"
Frank, Elie. "Modélisation du Syndrome d'Alström à partir de cellules souches pluripotentes humaines pour l'identification de cibles moléculaires d'intérêt thérapeutique". Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASQ041.
Texto completoAlström syndrome (AS) is a monogenic recessive multi-systemic disease characterized by hearing and vision loss, obesity, type 2 diabetes, cardiomyopathy and progressive liver and kidney failure. Symptoms affecting vision develop in the first few weeks after birth and gradually lead to total loss of sight. At present, there is no cure for this disease, and only solutions that reduce the effects of the symptoms can be proposed.The aim of this thesis is to develop a cellular model of AS with a view to understanding the molecular mechanisms driving the disease and identifying therapeutic targets.We obtained different clones with pathological or de novo mutations using genome-editing systems associated with CRISPR/Cas9. We characterized these model clones by seeking to identify specific phenotypic markers within the hiPSCs. The mutations generated did not change the properties of these cells.In a second step, still with the aim of identifying a pathological phenotype, we differentiated the model iPSC lines into RPE cells.Again, no specific phenotypic marker was identified. Finally, we differentiated our model hiPSC lines into neuroretinal organoids to study retinal cells development within these structures with a particular focus on photoreceptors. We were able to observe the absence or reduced expression of opsins characteristic of cones and rods in organoids derived from ALMS1-mutant hiPSCs. In addition, these organoids showed increased cell death compared with organoids derived from healthy hiPSC lines. This suggests that photoreceptors degenerate during differentiation within organoids. The mechanisms by which mutations in ALMS1 lead to this degeneration remain unclear.The cellular models of AS presented in this thesis therefore reproduce a pathological phenotype and will be invaluable tools for understanding the mechanisms responsible for the visual symptoms of the disease, and pave the way for screening strategies aimed at identifying new therapeutic targets