Artículos de revistas sobre el tema "NEUROPROTECTANTS"

Siga este enlace para ver otros tipos de publicaciones sobre el tema: NEUROPROTECTANTS.

Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros

Elija tipo de fuente:

Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "NEUROPROTECTANTS".

Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.

También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.

Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.

1

Palmer, Katharine J. y Joanne Dalton. "Neuroprotectants in Stroke". Drugs in R & D 1, n.º 1 (enero de 1999): 9–13. http://dx.doi.org/10.2165/00126839-199901010-00002.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
2

Schreihofer, D. A. "Phytoestrogens as neuroprotectants". Drugs of Today 45, n.º 8 (2009): 609. http://dx.doi.org/10.1358/dot.2009.45.8.1395520.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
3

Shi, Ligen, Marcelo Rocha, Rehana K. Leak, Jingyan Zhao, Tarun N. Bhatia, Hongfeng Mu, Zhishuo Wei et al. "A new era for stroke therapy: Integrating neurovascular protection with optimal reperfusion". Journal of Cerebral Blood Flow & Metabolism 38, n.º 12 (7 de septiembre de 2018): 2073–91. http://dx.doi.org/10.1177/0271678x18798162.

Texto completo
Resumen
Recent advances in stroke reperfusion therapies have led to remarkable improvement in clinical outcomes, but many patients remain severely disabled, due in part to the lack of effective neuroprotective strategies. In this review, we show that 95% of published preclinical studies on “neuroprotectants” (1990–2018) reported positive outcomes in animal models of ischemic stroke, while none translated to successful Phase III trials. There are many complex reasons for this failure in translational research, including that the majority of clinical trials did not test early delivery of neuroprotectants in combination with successful reperfusion. In contrast to the clinical trials, >80% of recent preclinical studies examined the neuroprotectant in animal models of transient ischemia with complete reperfusion. Furthermore, only a small fraction of preclinical studies included long-term functional assessments, aged animals of both genders, and models with stroke comorbidities. Recent clinical trials demonstrate that 70%–80% of patients treated with endovascular thrombectomy achieve successful reperfusion. These successes revive the opportunity to retest previously failed approaches, including cocktail drugs that target multiple injury phases and different cell types. It is our hope that neurovascular protectants can be retested in future stroke research studies with specific criteria outlined in this review to increase translational successes.
Los estilos APA, Harvard, Vancouver, ISO, etc.
4

Sharkey, John, Paul A. Jones, Jennifer F. McCarter y John S. Kelly. "Calcineurin Inhibitors as Neuroprotectants". CNS Drugs 13, n.º 1 (enero de 2000): 1–13. http://dx.doi.org/10.2165/00023210-200013010-00001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
5

Jeyaseelan, K., KY Lim y A. Armugam. "Neuroprotectants in stroke therapy". Expert Opinion on Pharmacotherapy 9, n.º 6 (abril de 2008): 887–900. http://dx.doi.org/10.1517/14656566.9.6.887.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
6

Štolc, Svorad. "Indole derivatives as neuroprotectants". Life Sciences 65, n.º 18-19 (octubre de 1999): 1943–50. http://dx.doi.org/10.1016/s0024-3205(99)00453-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
7

Kelly, J. S. y J. Sharkey. "Immunosuppressants-ligands as neuroprotectants". Transplantation Proceedings 33, n.º 3 (mayo de 2001): 2217–19. http://dx.doi.org/10.1016/s0041-1345(01)01945-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
8

Muir, K. W. y Ph A. Teal. "Why have neuroprotectants failed?" Journal of Neurology 252, n.º 9 (25 de agosto de 2005): 1011–20. http://dx.doi.org/10.1007/s00415-005-0933-6.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
9

&NA;. "Neuroprotectants for Parkinson's disease reviewed". Inpharma Weekly &NA;, n.º 1389 (mayo de 2003): 4. http://dx.doi.org/10.2165/00128413-200313890-00007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
10

KLEIN, MICHAEL, SILVIA CALDERON y BELINDA HAYES. "Abuse Liability Assessment of Neuroprotectants". Annals of the New York Academy of Sciences 890, n.º 1 NEUROPROTECTI (diciembre de 1999): 515–25. http://dx.doi.org/10.1111/j.1749-6632.1999.tb08033.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
11

Elmer, Jonathan y Jon C. Rittenberger. "Inhalational neuroprotectants: A noble cause". Resuscitation 107 (octubre de 2016): A7—A8. http://dx.doi.org/10.1016/j.resuscitation.2016.08.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
12

Tizabi, Yousef. "Duality of Antidepressants and Neuroprotectants". Neurotoxicity Research 30, n.º 1 (27 de noviembre de 2015): 1–13. http://dx.doi.org/10.1007/s12640-015-9577-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
13

Ahn, Young Hwan, Mia Emgård y Patrik Brundin. "Ultrastructural Characterization of Dissociated Embryonic Ventral Mesencephalic Tissue Treated with Neuroprotectants". Cell Transplantation 12, n.º 3 (abril de 2003): 235–41. http://dx.doi.org/10.3727/000000003108746795.

Texto completo
Resumen
Poor survival and differentiation of grafted dopamine neurons limits the application of clinical transplantation in Parkinson's disease. The survival of grafted dopamine neurons is only improved by a factor of 2–3 by adding neuroprotectants during tissue preparation. We used dye exclusion cell viability and electron microscopy to investigate the effects of the caspase inhibitor ac-YVAD-cmk and the lazaroid tirilazad mesylate on ultrastructural changes in dissociated embryonic mesencephalic cells. In addition, we examined whether the neuroprotectants selectively counteracted specific signs of neurodegeneration. Cell viability decreased significantly over time in both control and treated cell suspensions, but the number of viable cells remaining was significantly higher in tirilazad mesylate-treated cell suspensions. In control samples, the proportion of cells with an ultrastructure consistent with healthy cells decreased from 70%, immediately after dissociation, to 30% after 8 h of incubation. Similar changes were also observed in cell suspensions treated with neuroprotectants. Thus, the neuroprotectants examined did not block the development of specific morphological signs of neurodegeneration. However, when also taking into account that dead cells lysed and disappeared from each cell suspension with time, we found that the total number of remaining viable cells with healthy nuclear chromatin or intact membrane integrity was significantly higher in the tirilazad mesylate-treated group. The results indicate that tirilazad mesylate protects only a small subpopulation of embryonic mesencephalic cells from degeneration induced by mechanical trauma during tissue dissection and dissociation.
Los estilos APA, Harvard, Vancouver, ISO, etc.
14

FLOYD, ROBERT A., KENNETH HENSLEY, MICHAEL J. FORSTER, JUDITH A. KELLEHER-ANDERSON y PAUL L. WOOD. "Nitrones as Neuroprotectants and Antiaging Drugs". Annals of the New York Academy of Sciences 959, n.º 1 (abril de 2002): 321–29. http://dx.doi.org/10.1111/j.1749-6632.2002.tb02103.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
15

Dawson, V. L. "Potent neuroprotectants linked to bifunctional inhibition". Proceedings of the National Academy of Sciences 96, n.º 19 (14 de septiembre de 1999): 10557–58. http://dx.doi.org/10.1073/pnas.96.19.10557.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
16

Kandela, Peter. "Apply neuroprotectants rapidly for best results". Lancet 350, n.º 9082 (septiembre de 1997): 936. http://dx.doi.org/10.1016/s0140-6736(05)63276-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
17

Bhardwaj, Anish. "Statins as neuroprotectants after subarachnoid hemorrhage*". Critical Care Medicine 40, n.º 2 (febrero de 2012): 695–97. http://dx.doi.org/10.1097/ccm.0b013e318236e307.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
18

Alonso de Leciñana, María y Jose Antonio Egido. "Estrogens as Neuroprotectants against Ischemic Stroke". Cerebrovascular Diseases 21, n.º 2 (2006): 48–53. http://dx.doi.org/10.1159/000091703.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
19

Lobine, D., M.-J. R. Howes, I. Cummins, J. Govinden-Soulange, M. Ranghoo-Sanmukhiya, K. Lindsey y P. L. Chazot. "Bio-prospecting endemic MascareneAloesfor potential neuroprotectants". Phytotherapy Research 31, n.º 12 (11 de octubre de 2017): 1926–34. http://dx.doi.org/10.1002/ptr.5941.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
20

Babadjouni, Robin Moshe, Ryan E. Radwanski, Brian P. Walcott, Arati Patel, Ramon Durazo, Drew M. Hodis, Benjamin A. Emanuel y William J. Mack. "Neuroprotective strategies following intraparenchymal hemorrhage". Journal of NeuroInterventional Surgery 9, n.º 12 (14 de julio de 2017): 1202–7. http://dx.doi.org/10.1136/neurintsurg-2017-013197.

Texto completo
Resumen
Intracerebral hemorrhage and, more specifically, intraparenchymal hemorrhage, are devastating disease processes with poor clinical outcomes. Primary injury to the brain results from initial hematoma expansion while secondary hemorrhagic injury occurs from blood-derived products such as hemoglobin, heme, iron, and coagulation factors that overwhelm the brains natural defenses. Novel neuroprotective treatments have emerged that target primary and secondary mechanisms of injury. Nonetheless, translational application of neuroprotectants from preclinical to clinical studies has yet to show beneficial clinical outcomes. This review summarizes therapeutic agents and neuroprotectants in ongoing clinical trials aimed at targeting primary and secondary mechanisms of injury after intraparenchymal hemorrhage.
Los estilos APA, Harvard, Vancouver, ISO, etc.
21

Redivo, Luca, Rozalia-Maria Anastasiadi, Marco Pividori, Federico Berti, Maria Peressi, Devis Di Tommaso y Marina Resmini. "Prediction of self-assembly of adenosine analogues in solution: a computational approach validated by isothermal titration calorimetry". Physical Chemistry Chemical Physics 21, n.º 8 (2019): 4258–67. http://dx.doi.org/10.1039/c8cp05647a.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
22

Chamorro, Ángel. "Neuroprotectants in the Era of Reperfusion Therapy". Journal of Stroke 20, n.º 2 (31 de mayo de 2018): 197–207. http://dx.doi.org/10.5853/jos.2017.02901.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
23

Thauerer, Bettina, Stephanie zur Nedden y Gabriele Baier‐Bitterlich. "Purine nucleosides: endogenous neuroprotectants in hypoxic brain". Journal of Neurochemistry 121, n.º 3 (14 de marzo de 2012): 329–42. http://dx.doi.org/10.1111/j.1471-4159.2012.07692.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
24

Penkowa, Milena. "Metallothioneins are multipurpose neuroprotectants during brain pathology". FEBS Journal 273, n.º 9 (5 de abril de 2006): 1857–70. http://dx.doi.org/10.1111/j.1742-4658.2006.05207.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
25

Lyden, Patrick y Nils Gunnar Wahlgren. "Mechanisms of action of neuroprotectants in stroke". Journal of Stroke and Cerebrovascular Diseases 9, n.º 6 (noviembre de 2000): 9–14. http://dx.doi.org/10.1053/jscd.2000.19316.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
26

Bankhead, Charles. "Neuroprotectants not up to scratch in stroke". Inpharma Weekly &NA;, n.º 1228 (marzo de 2000): 3–4. http://dx.doi.org/10.2165/00128413-200012280-00003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
27

&NA;. "'Doom and gloom' for neuroprotectants in stroke?" Inpharma Weekly &NA;, n.º 1241 (junio de 2000): 3. http://dx.doi.org/10.2165/00128413-200012410-00004.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
28

Callaway, Jennifer. "Acute Stroke Therapy: Combination Drugs and Multifunctional Neuroprotectants". Current Neuropharmacology 2, n.º 3 (1 de julio de 2004): 277–94. http://dx.doi.org/10.2174/1570159043359602.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
29

Wahlgren, Nils Gunnar. "Neuroprotectants in Late Clinical Development – A Status Report". Cerebrovascular Diseases 7, n.º 2 (1997): 13–17. http://dx.doi.org/10.1159/000108238.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
30

Parng, Chuenlei, Christopher Ton, Ying-Xin Lin, Nicole Marie Roy y Patricia McGrath. "A zebrafish assay for identifying neuroprotectants in vivo". Neurotoxicology and Teratology 28, n.º 4 (julio de 2006): 509–16. http://dx.doi.org/10.1016/j.ntt.2006.04.003.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
31

Danino, O., N. Giladi, S. Grossman y B. Fischer. "Nucleoside 5′-phosphorothioate derivatives are highly effective neuroprotectants". Biochemical Pharmacology 88, n.º 3 (abril de 2014): 384–92. http://dx.doi.org/10.1016/j.bcp.2014.02.001.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
32

Wahlgren, Nils Gunnar y Patrick Lyden. "Neuroprotectants in the treatment of stroke—An overview". Journal of Stroke and Cerebrovascular Diseases 9, n.º 6 (noviembre de 2000): 32–35. http://dx.doi.org/10.1053/jscd.2000.19320.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
33

LoPachin, Richard M., Terrence Gavin, Brian C. Geohagen, Lihai Zhang, Diana Casper, Rukmani Lekhraj y David S. Barber. "β-Dicarbonyl enolates: a new class of neuroprotectants". Journal of Neurochemistry 116, n.º 1 (2 de diciembre de 2010): 132–43. http://dx.doi.org/10.1111/j.1471-4159.2010.07091.x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
34

Yuen, P. W. y K. W. Wang. "Calpain inhibitors: Novel neuroprotectants and potential anticataract agents". Drugs of the Future 23, n.º 7 (1998): 741. http://dx.doi.org/10.1358/dof.1998.023.07.858362.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
35

Abed, Edoardo, Giovanni Corbo y Benedetto Falsini. "Neurotrophin Family Members as Neuroprotectants in Retinal Degenerations". BioDrugs 29, n.º 1 (19 de noviembre de 2014): 1–13. http://dx.doi.org/10.1007/s40259-014-0110-5.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
36

Mitka, Mike. "News About Neuroprotectants for the Treatment of Stroke". JAMA 287, n.º 10 (13 de marzo de 2002): 1253. http://dx.doi.org/10.1001/jama.287.10.1253-jmn0313-2-1.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
37

Velpandian, Thirumurthy. "Closed Gateways — Can Neuroprotectants Shield the Retina in Glaucoma?" Drugs in R&D 10, n.º 2 (julio de 2010): 93–96. http://dx.doi.org/10.2165/11539310-000000000-00000.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
38

Carlson, Robert H. "Rough road to development for neuroprotectants in acute stroke". Inpharma Weekly &NA;, n.º 1027 (marzo de 1996): 9–10. http://dx.doi.org/10.2165/00128413-199610270-00015.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
39

Yang, Nan, Qi-Wen Guan, Fang-Hui Chen, Qin-Xuan Xia, Xi-Xi Yin, Hong-Hao Zhou y Xiao-Yuan Mao. "Antioxidants Targeting Mitochondrial Oxidative Stress: Promising Neuroprotectants for Epilepsy". Oxidative Medicine and Cellular Longevity 2020 (25 de noviembre de 2020): 1–14. http://dx.doi.org/10.1155/2020/6687185.

Texto completo
Resumen
Mitochondria are major sources of reactive oxygen species (ROS) within the cell and are especially vulnerable to oxidative stress. Oxidative damage to mitochondria results in disrupted mitochondrial function and cell death signaling, finally triggering diverse pathologies such as epilepsy, a common neurological disease characterized with aberrant electrical brain activity. Antioxidants are considered as promising neuroprotective strategies for epileptic condition via combating the deleterious effects of excessive ROS production in mitochondria. In this review, we provide a brief discussion of the role of mitochondrial oxidative stress in the pathophysiology of epilepsy and evidences that support neuroprotective roles of antioxidants targeting mitochondrial oxidative stress including mitochondria-targeted antioxidants, polyphenols, vitamins, thiols, and nuclear factor E2-related factor 2 (Nrf2) activators in epilepsy. We point out these antioxidative compounds as effectively protective approaches for improving prognosis. In addition, we specially propose that these antioxidants exert neuroprotection against epileptic impairment possibly by modulating cell death interactions, notably autophagy-apoptosis, and autophagy-ferroptosis crosstalk.
Los estilos APA, Harvard, Vancouver, ISO, etc.
40

Leker, R. R. y M. Y. Neufeld. "Anti-epileptic drugs as possible neuroprotectants in cerebral ischemia". Brain Research Reviews 42, n.º 3 (junio de 2003): 187–203. http://dx.doi.org/10.1016/s0165-0173(03)00170-x.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
41

Shen, J., K. Ghai, P. Sompol, X. Liu, X. Cao, P. M. Iuvone y K. Ye. "N-acetyl serotonin derivatives as potent neuroprotectants for retinas". Proceedings of the National Academy of Sciences 109, n.º 9 (13 de febrero de 2012): 3540–45. http://dx.doi.org/10.1073/pnas.1119201109.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
42

Fukuta, Tatsuya, Naoto Oku y Kentaro Kogure. "Application and Utility of Liposomal Neuroprotective Agents and Biomimetic Nanoparticles for the Treatment of Ischemic Stroke". Pharmaceutics 14, n.º 2 (4 de febrero de 2022): 361. http://dx.doi.org/10.3390/pharmaceutics14020361.

Texto completo
Resumen
Ischemic stroke is still one of the leading causes of high mortality and severe disability worldwide. Therapeutic options for ischemic stroke and subsequent cerebral ischemia/reperfusion injury remain limited due to challenges associated with drug permeability through the blood-brain barrier (BBB). Neuroprotectant delivery with nanoparticles, including liposomes, offers a promising solution to address this problem, as BBB disruption following ischemic stroke allows nanoparticles to pass through the intercellular gaps between endothelial cells. To ameliorate ischemic brain damage, a number of nanotherapeutics encapsulating neuroprotective agents, as well as surface-modified nanoparticles with specific ligands targeting the injured brain regions, have been developed. Combination therapy with nanoparticles encapsulating neuroprotectants and tissue plasminogen activator (t-PA), a globally approved thrombolytic agent, has been demonstrated to extend the narrow therapeutic time window of t-PA. In addition, the design of biomimetic drug delivery systems (DDS) employing circulating cells (e.g., leukocytes, platelets) with unique properties has recently been investigated to overcome the injured BBB, utilizing these cells’ inherent capability to penetrate the ischemic brain. Herein, we review recent findings on the application and utility of nanoparticle DDS, particularly liposomes, and various approaches to developing biomimetic DDS functionalized with cellular membranes/membrane proteins for the treatment of ischemic stroke.
Los estilos APA, Harvard, Vancouver, ISO, etc.
43

Pattarachotanant, Nattaporn, Anchalee Prasansuklab y Tewin Tencomnao. "Momordica charantia L. Extract Protects Hippocampal Neuronal Cells against PAHs-Induced Neurotoxicity: Possible Active Constituents Include Stigmasterol and Vitamin E". Nutrients 13, n.º 7 (10 de julio de 2021): 2368. http://dx.doi.org/10.3390/nu13072368.

Texto completo
Resumen
Polycyclic aromatic hydrocarbons (PAHs) have been recognized to cause neurobehavioral dysfunctions and disorder of cognition and behavioral patterns in childhood. Momordica charantia L. (MC) has been widely known for its nutraceutical and health-promoting properties. To date, the effect of MC for the prevention and handling of PAHs-induced neurotoxicity has not been reported. In the current study, the neuroprotective effects of MC and its underlying mechanisms were investigated in mouse hippocampal neuronal cell line (HT22); moreover, in silico analysis was performed with the phytochemicals MC to decipher their potential function as neuroprotectants. MC was demonstrated to possess neuroprotective effect by reducing reactive oxygen species’ (ROS’) production and down-regulating cyclin D1, p53, and p38 mitogen-activated protein kinase (MAPK) protein expressions, resulting in the inhibition of cell apoptosis and the normalization of cell cycle progression. Additionally, 28 phytochemicals of MC and their competence on inhibiting cytochrome P450 (CYP: CYP1A1, CYP1A2, and CYP1B1) functions were resolved. In silico analysis of vitamin E and stigmasterol revealed that their binding to either CYP1A1 or CYP1A2 was more efficient than the binding of each positive control (alizarin or purpurin). Together, MC is potentially an interesting neuroprotectant including vitamin E and stigmasterol as probable active components for the prevention for PAHs-induced neurotoxicity.
Los estilos APA, Harvard, Vancouver, ISO, etc.
44

Kaur, Prameet, Fujia Liu, Jun Tan, Kai Lim, Sugunavathi Sepramaniam, Dwi Karolina, Arunmozhiarasi Armugam y Kandiah Jeyaseelan. "Non-Coding RNAs as Potential Neuroprotectants against Ischemic Brain Injury". Brain Sciences 3, n.º 4 (20 de marzo de 2013): 360–95. http://dx.doi.org/10.3390/brainsci3010360.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
45

A. Sutherland, Brad, Joanne C. Harrison, Shiva M. Nair y Ivan A. Sammut. "Inhalation Gases or Gaseous Mediators As Neuroprotectants for Cerebral Ischaemia". Current Drug Targets 14, n.º 1 (1 de diciembre de 2012): 56–73. http://dx.doi.org/10.2174/1389450111314010007.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
46

A. Sutherland, Brad, Joanne C. Harrison, Shiva M. Nair y Ivan A. Sammut. "Inhalation Gases or Gaseous Mediators As Neuroprotectants for Cerebral Ischaemia". Current Drug Targets 14, n.º 1 (1 de enero de 2013): 56–73. http://dx.doi.org/10.2174/138945013804806433.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
47

FUKUTA, Tatsuya, Tomohiro ASAI y Naoto OKU. "Usefulness of Liposomal Neuroprotectants for the Treatment of Ischemic Stroke". Oleoscience 17, n.º 8 (2017): 359–66. http://dx.doi.org/10.5650/oleoscience.17.359.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
48

Pei, Zhang, Chen Jie-Si, Li Qi-Ye, Sheng Long-Xiang, Gao Yi-Xing, Lu Bing-Zheng, Zhu Wen-Bo et al. "Neuroprotectants attenuate hypobaric hypoxia-induced brain injuries in cynomolgus monkeys". Zool. Res. 41, n.º 1 (2020): 3–19. http://dx.doi.org/10.24272/j.issn.2095-8137.2020.012.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
49

Singh, Meharvan. "Estrogens and progesterone as neuroprotectants: what animal models teach us". Frontiers in Bioscience 13, n.º 13 (2008): 1083. http://dx.doi.org/10.2741/2746.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
50

Steiner, Thorsten y Werner Hacke. "Combination Therapy with Neuroprotectants and Thrombolytics in Acute Ischaemic Stroke". European Neurology 40, n.º 1 (1998): 1–8. http://dx.doi.org/10.1159/000007947.

Texto completo
Los estilos APA, Harvard, Vancouver, ISO, etc.
Ofrecemos descuentos en todos los planes premium para autores cuyas obras están incluidas en selecciones literarias temáticas. ¡Contáctenos para obtener un código promocional único!

Pasar a la bibliografía