Literatura académica sobre el tema "Neuromuscular spindle"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Neuromuscular spindle".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Neuromuscular spindle"
Rodger, J., M. R. Ziman, J. M. Papadimitriou y P. H. Kay. "Pax7 is expressed in the capsules surrounding adult mouse neuromuscular spindles". Biochemistry and Cell Biology 77, n.º 2 (20 de junio de 1999): 153–56. http://dx.doi.org/10.1139/o99-020.
Texto completoAndrechek, Eran R., William R. Hardy, Adele A. Girgis-Gabardo, Robert L. S. Perry, Richard Butler, Frank L. Graham, Ronald C. Kahn, Michael A. Rudnicki y William J. Muller. "ErbB2 Is Required for Muscle Spindle and Myoblast Cell Survival". Molecular and Cellular Biology 22, n.º 13 (1 de julio de 2002): 4714–22. http://dx.doi.org/10.1128/mcb.22.13.4714-4722.2002.
Texto completoSelcen, Duygu, William J. Kupsky y David Benjamins. "Myopathy with muscle spindle excess: A new congenital neuromuscular syndrome?" Muscle & Nerve 24, n.º 1 (enero de 2001): 138–43. http://dx.doi.org/10.1002/1097-4598(200101)24:1<138::aid-mus22>3.0.co;2-3.
Texto completoWilkerson, Gary B. y Arthur J. Nitz. "Dynamic Ankle Stability: Mechanical and Neuromuscular Interrelationships". Journal of Sport Rehabilitation 3, n.º 1 (febrero de 1994): 43–57. http://dx.doi.org/10.1123/jsr.3.1.43.
Texto completoLeu, M. "Erbb2 regulates neuromuscular synapse formation and is essential for muscle spindle development". Development 130, n.º 11 (1 de junio de 2003): 2291–301. http://dx.doi.org/10.1242/dev.00447.
Texto completoHörner, Sarah Janice, Nathalie Couturier, Roman Bruch, Philipp Koch, Mathias Hafner y Rüdiger Rudolf. "hiPSC-Derived Schwann Cells Influence Myogenic Differentiation in Neuromuscular Cocultures". Cells 10, n.º 12 (24 de noviembre de 2021): 3292. http://dx.doi.org/10.3390/cells10123292.
Texto completoKARAVASILIS, G. J. y A. G. RIGAS. "THE USE OF NONPARAMETRIC METHODS OF STATIONARY POINT PROCESSES IN THE STUDY OF COMPLEX INTERACTIONS IN THE NEUROMUSCULAR SYSTEM". Journal of Biological Systems 17, n.º 04 (diciembre de 2009): 577–95. http://dx.doi.org/10.1142/s0218339009003095.
Texto completoBarrett, Philip, Tom J. Quick, Vivek Mudera y Darren J. Player. "Generating intrafusal skeletal muscle fibres in vitro: Current state of the art and future challenges". Journal of Tissue Engineering 11 (enero de 2020): 204173142098520. http://dx.doi.org/10.1177/2041731420985205.
Texto completoHimmel, Lauren y Rachel Cianciolo. "Nodular typhlocolitis, heterakiasis, and mesenchymal neoplasia in a ring-necked pheasant (Phasianus colchicus) with immunohistochemical characterization of visceral metastases". Journal of Veterinary Diagnostic Investigation 29, n.º 4 (3 de mayo de 2017): 561–65. http://dx.doi.org/10.1177/1040638717707555.
Texto completoWerle, Michael J., John Roder y Andreas Jeromin. "Expression of frequenin at the frog (Rana) neuromuscular junction, muscle spindle and nerve". Neuroscience Letters 284, n.º 1-2 (abril de 2000): 33–36. http://dx.doi.org/10.1016/s0304-3940(00)01004-1.
Texto completoTesis sobre el tema "Neuromuscular spindle"
Stevenson, Deja Lee. "Whole-Body Vibration and Its Effects on Electromechanical Delay and Vertical Jump Performance". Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd867.pdf.
Texto completoPatten, Robert Michael. "Muscle spindle morphology in the tenuissimus muscle of the golden syrian hamster". Thesis, University of British Columbia, 1990. http://hdl.handle.net/2429/29747.
Texto completoMedicine, Faculty of
Graduate
Thompson, Karen Jane. "The identification and progress towards isolation of an atypical glutamate receptor in muscle spindle primary afferent nerve terminals". Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=232393.
Texto completoVitry, Florian. "Effets aigus et chroniques de l’électrostimulation appliquée au niveau du nerf moteur : importance du retour afférent". Thesis, Bourgogne Franche-Comté, 2019. http://www.theses.fr/2019UBFCK087.
Texto completoThe aim of this thesis was to investigate the effects of electrical stimulation protocols favouring an indirect motor units’ (MU) recruitment via sensory axons activation and giving rise to extra force development, on the neuromuscular system. These protocols use wide pulse duration, low stimulation intensity, low and high stimulation frequencies and are applied over the motor nerve. The aim of the first study was to examine the effects of these protocols on the extent and origin of neuromuscular fatigue during an acute application. Results showed that for a similar impact on maximal force generating capacity, low stimulation frequencies limit force decreases during the stimulation trains as compared to high stimulation frequencies. The aim of the second study was to investigate the effects of chronic application of these protocols. Results showed important torque gains after the training period despite the low stimulation intensity used, while the induced neural adaptations were frequency-dependent. Results of these two studies also highlighted the importance of the phenomenon of extra torque on induced adaptations. Thus, the aim of the third study was to determine the conditions permitting the occurrence of extra torque, by modulating the frequency and intensity of stimulation. Main results showed that when the initial MU recruitment was mostly indirect, the developed torque was higher than the one expected for the given stimulation parameters, independently of the stimulation frequency, suggesting that the indirect MU recruitment plays a preponderant role in the occurrence of extra torque. Moreover, a frequency-dependent impact on spinal excitability was observed, resulting in a decrease after the low stimulation frequency and an increase after the high frequency. Consequently, the last study investigated the mechanisms responsible for the distinct modulation of spinal excitability. Results showed that the decrease in spinal excitability observed after the low stimulation frequency could be attributed to increased homosynaptic post-activation depression, while this latter mechanism could have been compensated by an enhanced motoneuron excitability as a result of persistent inward currents after the high stimulation frequency. All these results underline the importance of the afferent volley to the induced neuromuscular adaptations after acute and chronic electrical stimulation application
Daniels, Rachael J. "Molecular analysis of spinal muscular atrophy". Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259878.
Texto completoShinohara, André Luís. "Células satélites e fusos neuromusculares em músculos estriados de ratos desnervados por longo período". Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/25/25149/tde-05112012-185039/.
Texto completoThe skeletal muscle consists of satellite cells (SC) which are in a quiescent state located between the sarcolemma and basal lamina of the muscle fibers. The SC can get activated, differentiating into myoblasts, contributing to regeneration and/or growth of muscle tissue. The neuromuscular spindles are mechanoreceptors located within the skeletal muscle and are considered as contractile regulatory unit, monitoring the speed and duration of muscle stretching. It is composed of Intrafusal muscle fibers (FIF), surrounded by a sheath and is parallel to extrafusal fibers. Denervation cause changes in skeletal muscles both in the CS and neuromuscular spindles. This study analyzed quantitatively the FIF and the proliferation of CS in rat skeletal muscle, denervated for long period. We used Wistar rats to perform this study. The animals were divided into control and denervated groups. The soleus and extensor digitorum longus (EDL) were denervated experimentally. After periods of 0, 12, 16, 19, 30 and 38 weeks, the muscles were dissected, removed and were prepared for histological analysis. The percentage of SC in muscles immediately after denervation, increases in relation to normal muscle and later decreases in both the groups. During the process of denervation, there was an increase in FIF when compared with normal group. The number of SC reduces significantly between the periods of denervation in both the groups. In the muscles studied, the smaller the percentage of SC, higher is the number of FIF and increase in the duration of denervation, reduces the number of SC. As for FIF, with the increase in time in control group, the number of fibres was unaltered. However, in the experimental group, with increase in the time of denervation, the number of SC decreases while there is increase in the number of FIF significantly. We thus conclude that in denervated mucles for long period, there is decrease in the percentage of satellite cells and increase in FIF. Finally our results suggest that the period between 16th and 19th week of post denervation is the best time for reinnervation of denervated muscle.
Eftekharzadeh, Bahareh. "Androgen receptor aggregates studies in vitro and in a transgenic mouse model of Spinal Bulbal Muscular Atrophpy (SMBA)". Doctoral thesis, Universitat de Barcelona, 2015. http://hdl.handle.net/10803/294596.
Texto completoL'atròfia muscular espinobulbar (SBMA) és una malaltia neuromuscular hereditària causada per una elongació d'una regió de poliglutamines localitzada en el domini de transactivació del receptor d'andrògens (AR). Malgrat que la base molecular d'aquesta malaltia encara no es coneix del tot, l'observació d'inclusions nuclears que contenen fragments del receptor dóna suport a la hipòtesi que està associada a l'agregació de l'AR. Per tal de caracteritzar el mecanisme molecular d'aquest procés hem investigat les propietats estructurals de la regió de poliglutamines del receptor així com els primers estadis de la seva oligomerització in vitro mitjançant espectroscòpia de ressonància magnètica nuclear (NMR) en solució. Per tal d'estudiar les propietats estructurals dels agregats que es formen en els teixits hem fet servir el lligand Seprion per aïllar els agregats que es formen en un model animal de SBMA. Mitjançant una combinació de microscòpia de força atòmica (AFM), microscòpia electrònica de transmissió (TEM) i microscòpia d'alta resolució hem caracteritzat els agregats formats tant en el múscul com en la medul·la espinal en aquest model animal. Els resultats indiquen que els agregats de l'AR que es formen en el múscul son clarament diferents d'aquells que es formen en la medul·la i, a més, que el fenotip dels animals empitjora a mesura que s'acumulen agregats en el primer d'aquests teixits. Els nostres resultats indiquen que les diferències que observem entre els agregats que es formen en el múscul i aquells que es formen en la medul·la estan associades a la presència de fragments d'AR en el primer d'aquest teixits. Proposem doncs, que formes truncades d'AR agreguen per formar espècies fibril·lars en el múscul del model animal i que aquestes provoquen el fenotip, que empitjora amb l'edat, perquè, en agregar, recluten proteïnes nuclears que altrament serien solubles. El nostre estudi dels primers estadis del mecanisme d'oligomerització indica clarament que la regió de poliglutamines és parcialment helicoïdal i que aquesta propensitat augmenta amb la seva longitud. A més hem identificat una regió del domini de transactivació, allunyada de la regió de poliglutamines, com a responsable de les primeres interaccions intermoleculars que tenen lloc durant el mecanisme d'oligomerització. En el nostre estudi de la interacció entre AR i les xaperones moleculars Hsp40 i Hsp72 hem descobert, mitjançant NMR, que totes dues proteïnes s'uneixen al motiu (23)FQNLF(27) del domini N-terminal i que l'Hsp40 s'uneix, a la vegada també al motiu (54)LLLLQQQQ(61) que hi ha a l'inici de la regió de poliglutamines. Aquestes descobertes suggereixen un senzill mecanisme per a desensamblatge del complex entre l'AR i les xaperones moleculars que té lloc durant l'activació del receptor per l'hormona testosterona, emfatitzen el potencial terapèutic de reguladors al·lostèrics de Hsp40 i Hsp72 i contribueixen a una millor comprensió del paper que les xaperones moleculars tenen en el control de qualitat de proteïnes en malalties neurodegeneratives.
Murray, Lyndsay M. "Synaptic vulnerability in spinal muscular atrophy". Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4419.
Texto completoFrancis, Michael J. "Physical mapping around the SMA gene using yeast artificial chromosomes (YACs)". Thesis, University of Oxford, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.259879.
Texto completoNataraj, Raviraj. "FEEDBACK CONTROL OF STANDING BALANCE USING FUNCTIONAL NEUROMUSCULAR STIMULATION FOLLOWING SPINAL CORD INJURY". Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1302482539.
Texto completoLibros sobre el tema "Neuromuscular spindle"
A, Boyd Ian y Gladden M. H. 1940-, eds. The Muscle spindle. New York, N.Y: Stockton Press, 1985.
Buscar texto completoKimura, Jun. Electrodiagnosis in diseases of nerve and muscle: Principles and practice. 4a ed. New York: Oxford University Press, 2013.
Buscar texto completoD, Binder Marc, ed. Peripheral and spinal mechanisms in the neural control of movement. Amsterdam: Elsevier, 1999.
Buscar texto completoCharacterization of motor pool selectivity of neuromuscular degeneration and identification of molecular correlates of disease resistance in Type I spinal muscular atrophy. [New York, N.Y.?]: [publisher not identified], 2015.
Buscar texto completoJ, Vinken P., Bruyn G. W, Klawans Harold L y Jong, J. M. B. V. de., eds. Diseases of the motor system. Amsterdam: Elsevier Science Publishers, 1991.
Buscar texto completo1918-, Höök Olle y Dimitrijevic Milan R, eds. Advances in neurological rehabilitation and restorative neurology: Proceedings of the Satellite Symposium, Ljubljana, September 8-10, 1985. Stockholm: Distributed by the Almqvist & Wiksell Periodical Co., 1988., 1988.
Buscar texto completoDorgan, Stephen Joseph. Mathematical modelling, analysis and control of artificially activated skeletal muscle. Dublin: University College Dublin, 1997.
Buscar texto completoElectrodiagnosis in diseases of nerve and muscle: Principles and practice. 3a ed. New York: Oxford University Press, 2000.
Buscar texto completoElectrodiagnosis in diseases of nerve and muscle: Principles and practice. 2a ed. Philadelphia: Davis, 1989.
Buscar texto completo1971-, Carr Matt, ed. Not so different: What you really want to ask about having a disability. New York: Roaring Brook Press, 2017.
Buscar texto completoCapítulos de libros sobre el tema "Neuromuscular spindle"
Krstić, Radivoj V. "Endings of Afferent Nerve Fibers. Neuromuscular Spindle". En General Histology of the Mammal, 370–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70420-8_181.
Texto completoKrstić, Radivoj V. "Endings of Afferent Nerve Fibers. Neuromuscular Spindle. Three-Dimensional View". En General Histology of the Mammal, 372–73. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-70420-8_182.
Texto completoKhadilkar, Satish V., Rakhil S. Yadav y Bhagyadhan A. Patel. "Spinal Muscular Atrophy". En Neuromuscular Disorders, 99–111. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-5361-0_10.
Texto completoMontes, Jacqueline y Petra Kaufmann. "Spinal Muscular Atrophy". En Neuromuscular Disorders, 229–35. Oxford, UK: Wiley-Blackwell, 2011. http://dx.doi.org/10.1002/9781119973331.ch30.
Texto completoSabah, Nassir H. "Spinal Cord and Reflexes". En Neuromuscular Fundamentals, 389–422. First edition. | Boca Raton : CRC Press, 2021.: CRC Press, 2020. http://dx.doi.org/10.1201/9781003024798-11.
Texto completoLubicky, John P. "Neuromuscular Spine Deformity". En Orthopedic Surgery Clerkship, 653–60. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-52567-9_138.
Texto completoHasler, Carol-Claudius. "Neuromuscular Spine Deformities". En Non-Idiopathic Spine Deformities in Young Children, 73–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-19417-7_5.
Texto completoAngelini, Corrado. "Distal Spinal Muscular Atrophy". En Genetic Neuromuscular Disorders, 383–84. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-56454-8_96.
Texto completoAngelini, Corrado. "Distal Spinal Muscular Atrophy". En Genetic Neuromuscular Disorders, 335–37. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07500-6_76.
Texto completoYaszay, Burt. "Other Neuromuscular Diseases". En The Growing Spine, 281–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-85207-0_22.
Texto completoActas de conferencias sobre el tema "Neuromuscular spindle"
Xu, Yunfei, Jongeun Choi, N. Peter Reeves y Jacek Cholewicki. "Optimal Neuromuscular Control of Spine Systems". En ASME 2009 Dynamic Systems and Control Conference. ASMEDC, 2009. http://dx.doi.org/10.1115/dscc2009-2575.
Texto completoLuigi Siccardi, Gian. "Complications and Revision in Neuromuscular, Congenital and Syndromic Scoliosis". En eccElearning Postgraduate Diploma in Spine Surgery. eccElearning, 2017. http://dx.doi.org/10.28962/01.3.165.
Texto completoIbrahim, Khalid. "Spinal Muscular Atrophy Melody in Qatar: Types and Treatment". En Congenital Dystrophies - Neuromuscular Disorders Precision Medicine: Genomics to Care and Cure. Hamad bin Khalifa University Press (HBKU Press), 2020. http://dx.doi.org/10.5339/qproc.2020.nmd.14.
Texto completoAnaniev, S. S., D. A. Pavlov, R. N. Yakupov, V. A. Golodnova y M. V. Balykin. "The effect of transcranial magnetic stimulation on the excitability of the motor neuron pools of the muscles of the lower extremities". En VIII Vserossijskaja konferencija s mezhdunarodnym uchastiem «Mediko-fiziologicheskie problemy jekologii cheloveka». Publishing center of Ulyanovsk State University, 2021. http://dx.doi.org/10.34014/mpphe.2021-8-11.
Texto completoSong, Seung Yun, Yinan Pei, Steven R. Tippett, Dronacharya Lamichhane, Christopher M. Zallek y Elizabeth T. Hsiao-Wecksler. "Validation of a Wearable Position, Velocity, and Resistance Meter for Assessing Spasticity and Rigidity". En 2018 Design of Medical Devices Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/dmd2018-6906.
Texto completoChang, Sarah R., Rudi Kobetic y Ronald J. Triolo. "Stand-to-sit maneuver in paraplegia after spinal cord injury using functional neuromuscular stimulation". En 2013 6th International IEEE/EMBS Conference on Neural Engineering (NER). IEEE, 2013. http://dx.doi.org/10.1109/ner.2013.6695928.
Texto completoLuna-Ramirez, Jean, Guersom Quispealaya-Lazo, Madai Taype-Mateo, Grimaldo Quispe, Heyul Chavez, Luis Rivera y Francisco Dominguez. "Design of an Exoskeleton to Prevent and to Take Care of the Spinal Column of Injuries of Low Back Pain". En Human Systems Engineering and Design (IHSED 2021) Future Trends and Applications. AHFE International, 2021. http://dx.doi.org/10.54941/ahfe1001194.
Texto completoCoghlan, S., L. Crowe, U. McCarthyPersson, C. Minogue y B. Caulfield. "Neuromuscular electrical stimulation training results in enhanced activation of spinal stabilizing muscles during spinal loading and improvements in pain ratings". En 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6091878.
Texto completoMirbagheri, M. M., C. Patel y K. Quiney. "Robotic-assisted locomotor training impact on neuromuscular properties and muscle strength in Spinal Cord Injury". En 2011 33rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE, 2011. http://dx.doi.org/10.1109/iembs.2011.6091026.
Texto completoPierella, C., A. De Luca, E. Tasso, F. Cervetto, S. Gamba, L. Losio, E. Quinland et al. "Changes in neuromuscular activity during motor training with a body-machine interface after spinal cord injury". En 2017 International Conference on Rehabilitation Robotics (ICORR). IEEE, 2017. http://dx.doi.org/10.1109/icorr.2017.8009396.
Texto completoInformes sobre el tema "Neuromuscular spindle"
Velozo, Craig, Andrea L. Behrman y D. M. Basso. Responsiveness of a Neuromuscular Recovery Scale for Spinal Cord Injury: Inpatient and Outpatient Rehabilitation. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2013. http://dx.doi.org/10.21236/ada605168.
Texto completoVelozo, Craig. Responsiveness of a Neuromuscular Recovery Scale for Spinal Cord Injury: Inpatient and Outpatient Rehabilitation. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2012. http://dx.doi.org/10.21236/ada580928.
Texto completoBehrman, Andrea, D. M. Basso y Craig Veloso. Responsiveness of a Neuromuscular Recovery Scale for Spinal Cord Injury: Inpatient and Outpatient Rehabilitation. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2012. http://dx.doi.org/10.21236/ada580929.
Texto completoBasso, D. M., Andrea L. Behrman y Craig Velozo. Responsiveness of a Neuromuscular Recovery Scale for Spinal Cord Injury: Inpatient and Outpatient Rehabilitation. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2012. http://dx.doi.org/10.21236/ada580930.
Texto completoBehrman, Andrea L., D. M. Basso y Craig Velozo. Responsiveness of a Neuromuscular Recovery Scale for Spinal Cord Injury: Inpatient and Outpatient Rehabilitation. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2013. http://dx.doi.org/10.21236/ada599055.
Texto completoBehrman, Andrea L., Michele Basso y Craig Velozo. Responsiveness of a Neuromuscular Recovery Scale for Spinal Cord Injury: Inpatient and Outpatient Rehabilitation. Fort Belvoir, VA: Defense Technical Information Center, octubre de 2011. http://dx.doi.org/10.21236/ada554730.
Texto completo