Índice
Literatura académica sobre el tema "NEUROBLASTOMA, HIF-2α"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "NEUROBLASTOMA, HIF-2α".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "NEUROBLASTOMA, HIF-2α"
Pini, Nicola, Zihe Huo, Urs Kym, Stefan Holland-Cunz y Stephanie J. Gros. "AQP1-Driven Migration Is Independent of Other Known Adverse Factors but Requires a Hypoxic Undifferentiated Cell Profile in Neuroblastoma". Children 8, n.º 1 (15 de enero de 2021): 48. http://dx.doi.org/10.3390/children8010048.
Texto completoHolmquist-Mengelbier, Linda, Erik Fredlund, Tobias Löfstedt, Rosa Noguera, Samuel Navarro, Helén Nilsson, Alexander Pietras et al. "Recruitment of HIF-1α and HIF-2α to common target genes is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype". Cancer Cell 10, n.º 5 (noviembre de 2006): 413–23. http://dx.doi.org/10.1016/j.ccr.2006.08.026.
Texto completoMontalto, Angela Simona, Monica Currò, Tiziana Russo, Nadia Ferlazzo, Daniela Caccamo, Riccardo Ientile, Carmelo Romeo y Pietro Impellizzeri. "CO2 Pneumoperitoneum Effects on Molecular Markers of Tumor Invasiveness in SH-SY5Y Neuroblastoma Cells". European Journal of Pediatric Surgery 30, n.º 06 (10 de noviembre de 2019): 524–28. http://dx.doi.org/10.1055/s-0039-1700547.
Texto completoCimmino, F., M. Avitabile, L. Pezone, G. Scalia, D. Montanaro, M. Andreozzi, L. Terracciano, A. Iolascon y M. Capasso. "CD55 is a HIF-2α marker with anti-adhesive and pro-invading properties in neuroblastoma". Oncogenesis 5, n.º 4 (abril de 2016): e212-e212. http://dx.doi.org/10.1038/oncsis.2016.20.
Texto completoNilsson, Helén, Annika Jögi, Siv Beckman, Adrian L. Harris, Lorenz Poellinger y Sven Påhlman. "HIF-2α expression in human fetal paraganglia and neuroblastoma: relation to sympathetic differentiation, glucose deficiency, and hypoxia". Experimental Cell Research 303, n.º 2 (febrero de 2005): 447–56. http://dx.doi.org/10.1016/j.yexcr.2004.10.003.
Texto completoNilsson, M. B., P. E. Zage, L. Zeng, L. Xu, T. Cascone, H. K. Wu, B. Saigal, P. A. Zweidler-McKay y J. V. Heymach. "Multiple receptor tyrosine kinases regulate HIF-1α and HIF-2α in normoxia and hypoxia in neuroblastoma: implications for antiangiogenic mechanisms of multikinase inhibitors". Oncogene 29, n.º 20 (8 de marzo de 2010): 2938–49. http://dx.doi.org/10.1038/onc.2010.60.
Texto completoHamidian, Arash, Kristoffer von Stedingk, Matilda Munksgaard Thorén, Sofie Mohlin y Sven Påhlman. "Differential regulation of HIF-1α and HIF-2α in neuroblastoma: Estrogen-related receptor alpha (ERRα) regulates HIF2A transcription and correlates to poor outcome". Biochemical and Biophysical Research Communications 461, n.º 3 (junio de 2015): 560–67. http://dx.doi.org/10.1016/j.bbrc.2015.04.083.
Texto completoHafizi, Redona, Faik Imeri, Roland H. Wenger y Andrea Huwiler. "S1P Stimulates Erythropoietin Production in Mouse Renal Interstitial Fibroblasts by S1P1 and S1P3 Receptor Activation and HIF-2α Stabilization". International Journal of Molecular Sciences 22, n.º 17 (31 de agosto de 2021): 9467. http://dx.doi.org/10.3390/ijms22179467.
Texto completoPietras, A., D. Gisselsson, I. Øra, R. Noguera, S. Beckman, S. Navarro y S. Påhlman. "High levels of HIF-2α highlight an immature neural crest-like neuroblastoma cell cohort located in a perivascular niche". Journal of Pathology 214, n.º 4 (11 de diciembre de 2007): 482–88. http://dx.doi.org/10.1002/path.2304.
Texto completoChen, Shu-jen, Nicholas E. Hoffman, Santhanam Shanmughapriya, Lei Bao, Kerry Keefer, Kathleen Conrad, Salim Merali et al. "A Splice Variant of the Human Ion Channel TRPM2 Modulates Neuroblastoma Tumor Growth through Hypoxia-inducible Factor (HIF)-1/2α". Journal of Biological Chemistry 289, n.º 52 (12 de noviembre de 2014): 36284–302. http://dx.doi.org/10.1074/jbc.m114.620922.
Texto completoTesis sobre el tema "NEUROBLASTOMA, HIF-2α"
PEZONE, Lucia. "Cellular proteome alterations in response to hypoxia inducible factor HIF-2α in normoxic neuroblastoma cells". Doctoral thesis, 2016. http://hdl.handle.net/11562/938441.
Texto completoNeuroblastoma (NB) is an embryonal tumor of neuroectodermal cells derived from precursor or immature cells of the sympathetic nervous system (SNS). This disease rappresents the most common extracranial tumor in infants, accounting for 8% to 10% of all childhood cancer and for approximately 15% of cancer deaths in children. The deep knowledge of NB biology is imperative toward the development of novel therapy. Hypoxia is a typical feature of several solid tumors microenvironment and is associated with a poor prognosis and resistance to therapy. The relationship among hypoxia, tumor phenotypes and clinical parameters in NB is not well characterized. Tumor adaptation to hypoxia is mainly mediated by two transcription factors: the hypoxia-inducible factors (HIFs) HIF-1α and HIF-2α. HIF-2α is stable also in normoxia condition and continues to be active even after 48–72 h of hypoxia in some neuroblastoma cell lines thus indicate that HIF-2α plays a critical role in driving the hypoxic response. Interesting, HIF-2α is correlated with poor patient prognosis in NB and is localizated in tumor peri-vascular niches. These findings indicate that HIF-2α protein expression in NB samples at normoxic levels might affect the aggressive tumor phenotype. The main aim of my phD program has been to get new insights into the molecular mechanism of tumor aggressiveness mediated by HIF-2α protein overexpression in NB cells. Interesting, HIF-2α overexpressing cells acquire an undifferentiated phenotype and the ability to grow as neurospheres in soft agar. Then I applied two different proteomic approaches, DIGE analysis and FACS detection of membrane antigens to identify new putative prognostic and therapeutic hypoxia-related targets to be used in clinical treatment of aggressive NB forms. The identified proteins have important roles in a variety of pathways such as “citrate cycle”, “glycolysis” and “splicesoma” thus indicating that HIF-2α over-expression affects the cellular metabolic balance and increases the processes of mRNA regulation. These findings might provide an innovative therapeutic strategy by combining anti-metabolic drugs and pathways inhibitors.Among the cell surface antigens which were differentialy HIF-2α regulated CD55 was the most significantly expressed marker in our cellular system. I assessed CD55 has anti-adhesive and pro-invading functions that might provide the basis for NB solid tumors to survive as microscopic residual disease. Furthermore, the use of CD55 antibody-based visualization as in PET (Positron Emission Tomography) imaging will have implications for the development of more accurate diagnosis and prognosis in challenging cases and for driving personalized treatment. In conclusion, the HIF-2α novel markers identified in this study might improve patients risk stratification and could be also used as putative drug targets being immunotherapy is one of the most promising anticancer treatment.