Tesis sobre el tema "Neural stem cells, Oligodendrocyte differentiation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Neural stem cells, Oligodendrocyte differentiation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Dunphy, Jaclyn Marie. "Infection of Neural Stem Cells with Murine Leukemia Viruses Inhibits Oligodendroglial Differentiation: Implications for Spongiform Neurodegeneration". Kent State University / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=kent1334343584.
Texto completoAvola, Rosanna. "Dynamic expression of aquaporins in physiological and pathophysiological in vitro models". Doctoral thesis, Università di Catania, 2017. http://hdl.handle.net/10761/3620.
Texto completoJoannides, Alexis. "Neural differentiation of human embryonic stem cells". Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/252121.
Texto completoEriksson, Malin. "Manipulating neural stem cells". Stockholm, 2010. http://diss.kib.ki.se/2010/978-91-7409-853-2/.
Texto completoPan, Chendong. "Neural differentiation from human embryonal carcinoma stem cells". Thesis, Durham University, 2007. http://etheses.dur.ac.uk/2460/.
Texto completoKennea, Nigel Leonard. "Neural differentiation of human fetal mesenchymal stem cells". Thesis, Imperial College London, 2007. http://hdl.handle.net/10044/1/7409.
Texto completoErlandsson, Anna. "Neural Stem Cell Differentiation and Migration". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl.[distributör], 2003. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-3546.
Texto completoHardy, Steven Allan. "Mesenchymal stem cells as trophic mediators of neural differentiation". Thesis, Durham University, 2010. http://etheses.dur.ac.uk/524/.
Texto completoAlbertson, Roger Joseph. "Establishing asymmetry in Drosophila neural stem cells /". view abstract or download file of text, 2003. http://wwwlib.umi.com/cr/uoregon/fullcit?p3112998.
Texto completoTypescript. Includes vita and abstract. Includes bibliographical references (leaves 101-117). Also available for download via the World Wide Web; free to University of Oregon users.
Jones, Robert. "Proteomic analysis of neural differentiation in mouse embryonic stem cells". Thesis, Bangor University, 2004. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.412699.
Texto completoWiskow, Ole. "Evaluation of the neuronal differentiation capacity of pluripotent stem cells and neural stem cells in monolayer culture". Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.609417.
Texto completoEL, SAID DALYA. "Blood derived stem cells (BDSCs): neural differentiation protocols for human therapy". Doctoral thesis, Università degli Studi di Roma "Tor Vergata", 2012. http://hdl.handle.net/2108/209984.
Texto completoStem cells technology has provoked considerable excitement among people interested in welfare of animals and humans. Many people are searching for new treatments of diseases and in vivo therapy. We know that all types of cells can be regenerated except neural cells of mammals such as don’t regenerate, although the peripheral nervous tissue regenerate if neurillematic sheath allow the orientation of fiber. the importance of obtaining functional nerve cells is vital in neurodegenerative diseases. Neurodegenerative diseases are by definition progressive chronic diseases characterized by a selective loss of neurons in areas, symmetric motor , sensory , cognitive and member ship of CNS, or loss / dysfunction of myelinated or non myelinated fibers in the PNS. It has been possible today to use BDSCs after Deprogrammation of adult peripheral blood, and using specific protocols to obtain “neurospheres” from these cells in specific medium and non toxic substances addition. Neurospheres (composed of neural stem cells) provide a method for investigating neural precursor in vitro instead of embryonic stem cells. In this study I have demonstrated how BDSCs being able to form neurospheres and differentiated into mature neurons in vitro, and how it is possible to use stem cells therapy as treatment in vivo.
Sartor, Francesca. "Regulation of translation initiation and RNA decay is important for neuronal differentiation". Thesis, University of Aberdeen, 2016. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=.
Texto completoGe, Shufan. "Impact of Muscarinic Receptor Activation on Neural Stem Cell Differentiation". University of Toledo Health Science Campus / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=mco1291827018.
Texto completoNordin, Norshariza. "Roles of Wnt signalling during neural differentiation of embryonic stem (ES) cells". Thesis, University of Edinburgh, 2006. http://hdl.handle.net/1842/25031.
Texto completoYuen, Shun Ming. "Regulation of neural differentiation in mouse embryonic stem cells using small molecules". Thesis, Cardiff University, 2013. http://orca.cf.ac.uk/53933/.
Texto completoLiu, Ning. "Expansion and Neural Differentiation of Embryonic Stem Cells in Three-Dimensional Cultures". The Ohio State University, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=osu1262281522.
Texto completoJoshi, Ramila Joshi. "Micro-engineering of embryonic stem cells niche to regulate neural cell differentiation". University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1544029342969082.
Texto completoDoszyn, Olga. "Sex differences in neuronal differentiation of human stem cells". Thesis, Uppsala universitet, Institutionen för biologisk grundutbildning, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-384661.
Texto completoEnarsson, Mia. "Roles of PDGF for Neural Stem Cells". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4245.
Texto completoAarum, Johan. "Interactions between mouse CNS cells: microglia and neural precursor cells /". Stockholm, 2004. http://diss.kib.ki.se/2004/91-7140-120-2/.
Texto completoKato, Takeo. "A neurosphere-derived factor, cystatin C, supports differentiation of ES cells into neural stem cells". Kyoto University, 2006. http://hdl.handle.net/2433/135642.
Texto completoChabu, Chiswili Yves. "Regulation of cell polarity and self-renewal in Drosophila neural stem cells /". Connect to title online (Scholars' Bank) Connect to title online (ProQuest), 2008. http://hdl.handle.net/1794/8330.
Texto completoTypescript. Includes vita and abstract. Includes bibliographical references (leaves 82-93). Also available online in Scholars' Bank; and in ProQuest, free to University of Oregon users.
Faijerson, Jonas. "Neural stem/progenitor cells in the post-ischemic environment : proliferation, differentiation and neuroprotection /". Göteborg : Center for Brain Repair and Rehabilitation, Institute of Neuroscience and Physiology, Göteborg University, 2007. http://hdl.handle.net/2077/4516.
Texto completoNasir, Wafaa. "Effect of Topography on Mouse Embryonic Stem Cells During Pluripotency and Neural Differentiation". University of Akron / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=akron1533098386697352.
Texto completoHolmström, Niklas. "Directed differentiation of adult neural stem cells for cell therapy in the nervous system /". Stockholm, 2005. http://diss.kib.ki.se/2005/91-7140-358-2/.
Texto completoOvando, Roche Patrick. "Role of telomere binding protein TRF2 in neural differentiation of human embryonic stem cells". Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/24848.
Texto completoKishi, Yo. "Estrogen promotes differentiation and survival of dopaminergic neurons derived from human neural stem cells". Kyoto University, 2005. http://hdl.handle.net/2433/144382.
Texto completo0048
新制・課程博士
博士(医学)
甲第11935号
医博第2917号
新制||医||910(附属図書館)
23724
UT51-2006-B114
京都大学大学院医学研究科脳統御医科学系専攻
(主査)教授 山中 伸弥, 教授 福山 秀直, 教授 篠原 隆司
学位規則第4条第1項該当
Repele, Andrea. "Differentiation potential and metabolic analysis of satellite cells and amniotic fluid stem cells". Doctoral thesis, Università degli studi di Padova, 2012. http://hdl.handle.net/11577/3422458.
Texto completoIl nostro gruppo ha recentemente caratterizzato due distinte popolazioni di cellule satelliti, classificate come cloni a bassa proliferazione (LPC) e ad alta proliferazione (HPC), che si differenziano in termini di proliferazione, potenziale rigenerativo e metabolismo mitocondriale. Nel mio lavoro di dottorato, abbiamo valutato e caratterizzato la loro biologia cellulare con particolare attenzione a quelle differenze intrinseche presenti anche prima della loro clonazione. Infatti, ambo le tipologie clonali possono essere distinte mediante il potenziale di membrana mitocondriale (ΔΨm) subito dopo l’isolamento dalla fibra. Questo dato è in accordo con lo stato ossido riduttivo mitocondriale misurato tramite NAD+/NADH e la quantificazione della produzione di CO2. Questi risultati sono responsabili delle differenze metaboliche e possono essere spiegati dalla diversa espressione dell’enzima glicolitico Pfkfb3. Inoltre la concentrazione mitocondriale del Ca2+ e la sensibilità all’apoptosi sono modificate così come la dimensione della rete mitocondriale. In conclusione, siamo stati in grado di determinare quale clone rappresenta la cellula staminale all’interno della popolazione di cellule satelliti. Queste nuove osservazioni sperimentali rivelano caratteristiche fisiologiche della biologia delle popolazioni delle cellule satelliti prima e dopo la clonazione, mettendo in luce un’eterogeneità intrinseca della cellula satellite. Nella seconda parte della mia tesi abbiamo esplorato la possibilità che le cellule satelliti possano, se opportunamente stimolate, trans-differenziarsi in cellule muscolari lisce. Il sistema nervoso enterico normalmente interagisce con le cellule muscolari per controllare l’attività peristaltica e secretoria della parete intestinale. L’incompleta colonizzazione dell’intestino da parte delle cellule della cresta neurale provoca la malattia di Hirschsprung, caratterizzata da aganglionosi del colon distale. Le neurosfere (NLBs), precursori enterici in grado di auto-rinnovarsi, possono generare neuroni e glia; essere isolate dall’intestino di topi, ratti e umani e sono in grado di colonizzare l'intestino dopo il trapianto. Il nostro obiettivo è di capire la relazione tra i precursori di cellule satelliti (MPCs) e NLBs utilizzando un modello in vitro di co-coltura: questo sarà utile in prospettiva di un approccio di ingegneria tissutale per la rigenerazione intestinale e muscolo scheletrico. I nostri dati hanno evidenziato che NLBs, in presenza di MPCs, sono in grado di formare nuovi miotubi. L’uso di terreni di coltura miogenici ha evidenziato un notevole aumento della differenziazione in senso muscolare, promuovendo la formazione di striature ed aumentando l’espressione di desmina. Dall’altra parte, l’utilizzo di terreni di coltura neurogenici ha mostrato un fenotipo simil neurale. Come prospettive future, dobbiamo comprendere ulteriormente la relazione tra MPCs e NLBs e se le sinapsi sono coinvolte in questo processo; si deve verificare se un loro utilizzo su polimeri biocompatibili ne possa influenzare il comportamento, ed infine è necessaria una conferma dei suddetti dati tramite un’analisi di differenziazione in vivo in muscolo scheletrico e liscio. Nella terza ed ultima fase del mio lavoro, ci siamo focalizzati ad esplorare la possibilità che cellule non-muscolari possano, se opportunamente stimolate, differenziare in senso muscolare liscio. Il nostro obiettivo è stato quello di ottenere cellule muscolari lisce (SMCs) partendo da cellule staminali del fluido amniotico umano (hAFSC). hAFSC sono state trasdotte utilizzando un virus codificante per ZsGreen sotto il promotore αSMA. SMhAFSC così ottenute hanno evidenziate un alto livello d’espressione dei geni del muscolo liscio (come αSMA, desmina, calponina e smoothelin). Queste caratteristiche sono state confermate da molteplici analisi: di immunofluorescenza, dimostrando la positività a marcatori specifici per il muscolo liscio; microscopia a trasmissione elettronica (TEM), dove si verificava l’aumento della presenza di filamenti intermedi, di corpi densi e depositi di glicogeno, modello simile rispetto alle SMCs. Analisi in timelapse di SMhAFSC hanno dimostrato che queste possiedono un potenziale contrattile superiore rispetto hAFSC e studi su singola cellula hanno evidenziato la presenza di canali calcio voltaggio-dipendenti attivati da potassio solamente su SMhAFSC. In conclusione, siamo stati in grado di generare di cellule muscolari lisce funzionali da un precursore nonmuscolare ed in secondo luogo il processo di trasduzione può rappresentare un valido strumento per distinguere e selezionare differenti popolazioni. Questa fase può eventualmente superare il ben noto problema dell’espansione di progenitori di cellule muscolari lisce, rendendo queste cellule suscettibili per approcci d’ingegneria tessutale.
Tamm, Christoffer. "Apoptotic cell death in neural stem cells exposed to toxic stimuli /". Stockholm : Karolinska institutet, 2007. http://diss.kib.ki.se/2007/978-91-7357-301-6/.
Texto completoLi, Yue y 李越. "Caveolin-1 is a negative regulator of neuronal differentiation of neural progenitor cells in vitro and in vivo". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B46918863.
Texto completoLarsson, Jimmy. "Neural stem and progenitor cells cellular responses to known and novel factors /". Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-110722.
Texto completoContreras-Sesvold, Carmen Sesvold Carmen Contreras. "Reactive astrocytes : phenotypic and functional characteristics and astrocytes as neural stem cells /". Download the thesis in PDF, 2006. http://www.lrc.usuhs.mil/dissertations/pdf/ContrerasSesvold2006.pdf.
Texto completoMarzec-Schmidt, Katarzyna. "Deep convolutional neural networks accurately predict the differentiation status of human induced pluripotent stem cells". Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-19420.
Texto completoNishida, Akihiro. "Incorporation and Differentiation of Hippocampus-Derived Neural Stem Cells Transplanted in Injured Adult Rat Retina". Kyoto University, 2001. http://hdl.handle.net/2433/151451.
Texto completoZimmer, Bastian [Verfasser]. "Modeling of neural differentiation by using embryonic stem cells to detect developmental toxicants / Bastian Zimmer". Konstanz : Bibliothek der Universität Konstanz, 2011. http://d-nb.info/1045154121/34.
Texto completoChan, Yan-ho y 陳恩浩. "The influences of lead ions on viability, proliferation and neuronal differentiation of hippocampal-derived neural stem cells of newbornand adult rats". Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B48333220.
Texto completopublished_or_final_version
Anatomy
Master
Master of Medical Sciences
Ngo, Justine Marie. "Understanding Dishevelled-Mediated Wnt Signaling in Regulating Early Development and Stem Cell Differentiation". Case Western Reserve University School of Graduate Studies / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=case158022929074044.
Texto completoPadam, Amith Chordia. "Development and Commercialization of Remyelination Therapeutics to Restore Neural Function in Multiple Sclerosis". Case Western Reserve University School of Graduate Studies / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=case1304690351.
Texto completoPhillips, Nick. "Modelling and analysis of oscillations in gene expression through neural development". Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/modelling-and-analysis-of-oscillations-in-gene-expression-through-neural-development(099f8bee-c1ce-4ca2-951e-a1e3fb7321bd).html.
Texto completoNakaji(Hirabayashi), Tadashi. "Design of Bioactive Materials with Chimeric Proteins for Controlling Proliferation and Differentiation of Neural Stem Cells". 京都大学 (Kyoto University), 2009. http://hdl.handle.net/2433/124507.
Texto completoDrury-Stewart, Danielle Nicole. "Controlling the microenvironment of human embryonic stem cells: maintenance, neuronal differentiation, and function after transplantation". Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/45967.
Texto completoBeligala, Dilshan Harshajith. "Stem-like cells and glial progenitors in the adult mouse suprachiasmatic nucleus". Bowling Green State University / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1566319291491512.
Texto completoOkolicsanyi, Rachel K. "Mesenchymal stem cells as mediators of the neuronal cell niche". Thesis, Queensland University of Technology, 2015. https://eprints.qut.edu.au/84485/1/Rachel_Okolicsanyi_Thesis.pdf.
Texto completoTasneem, Sameera. "EFFECTS OF ENVIRONMENTAL HEAVY METALS ON NERUAL STEM CELL SURVIVAL AND DIFFERENTIATION". Cleveland State University / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=csu1400500632.
Texto completoSteeg, Rachel. "The role of low oxygen in the self-renewal and neural differentiation of human pluripotent stem cells". Thesis, Cardiff University, 2015. http://orca.cf.ac.uk/69784/.
Texto completoMcLaughlin, Heather Ward. "Modeling sporadic Alzheimer's disease using induced pluripotent stem cells". Thesis, Harvard University, 2014. http://nrs.harvard.edu/urn-3:HUL.InstRepos:13094355.
Texto completoEiriz, Maria Francisca Santos. "Migration and differentiation of neuronal precursors in the postnatal brain: insights from the subventricular zone and cerebellum". Doctoral thesis, Faculdade de Ciências e Tecnologia, 2013. http://hdl.handle.net/10362/11447.
Texto completoBertacchi, Michele. "In vitro neural differentiation of mouse embryonic stem cells: the positional identity of mouse ES-generated neurons is affected by BMP, Wnt and activin signaling". Doctoral thesis, Scuola Normale Superiore, 2014. http://hdl.handle.net/11384/85976.
Texto completoCarradori, Dario. "Novel nanoparticle-based drug delivery system for neural stem cell targeting and differentiation". Thesis, Angers, 2017. http://www.theses.fr/2017ANGE0056/document.
Texto completoNeural stem cells (NSCs) are located in specific regions of the central nervous system called niches. Those cells are able to self-renew and to differentiate into specialized neuronal cells (neurons, astrocytes and oligodendrocytes). Due to this differentiation property, NSCs are studied to replace neuronal cells and restore neurological functions in patients affected by neurodegenerative diseases. Several therapeutic approaches have been developed and endogenous NSC stimulation is one of the most promising. Currently, there is no active molecule or therapeutic system targeting endogenous CSNs and inducing their differentiation at the same time. The aim of the work was to provide a drug delivery system able both to target endogenous CSNs and to induce their differentiation in situ. Here, we developed and characterized lipidic nanoparticles (LNC) targeting endogenous NSCs. A peptide called NFL-TBS.40-63, known for its affinity towards NSCs, was adsorbed at the surface of LNC. We observed that NFL-LNC specifically targeted NSC from the brain and not from the spinal cord in vitro and in vivo. To explain this specificity, we characterized and compared NFL-LNC interactions with the plasmatic membrane of both cell types. Finally, we demonstrated that by loading retinoic acid in NFL-LNC we were able to induce brain NSC differentiation in vitro and in vivo. This work contributes to the development of efficient and safe therapies for the treatment of neurodegenerative disease via the differentiation of endogenous NSCs