Artículos de revistas sobre el tema "Neural organoids"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Neural organoids".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Yu, Xiyao, Xiaoting Meng, Zhe Pei, Guoqiang Wang, Rongrong Liu, Mingran Qi, Jiaying Zhou y Fang Wang. "Physiological Electric Field: A Potential Construction Regulator of Human Brain Organoids". International Journal of Molecular Sciences 23, n.º 7 (31 de marzo de 2022): 3877. http://dx.doi.org/10.3390/ijms23073877.
Texto completoPflug, Florian G., Simon Haendeler, Christopher Esk, Dominik Lindenhofer, Jürgen A. Knoblich y Arndt von Haeseler. "Neutral competition explains the clonal composition of neural organoids". PLOS Computational Biology 20, n.º 4 (22 de abril de 2024): e1012054. http://dx.doi.org/10.1371/journal.pcbi.1012054.
Texto completoLogan, Sarah, Thiago Arzua, Yasheng Yan, Congshan Jiang, Xiaojie Liu, Lai-Kang Yu, Qing-Song Liu y Xiaowen Bai. "Dynamic Characterization of Structural, Molecular, and Electrophysiological Phenotypes of Human-Induced Pluripotent Stem Cell-Derived Cerebral Organoids, and Comparison with Fetal and Adult Gene Profiles". Cells 9, n.º 5 (23 de mayo de 2020): 1301. http://dx.doi.org/10.3390/cells9051301.
Texto completoKim, Soo-hyun y Mi-Yoon Chang. "Application of Human Brain Organoids—Opportunities and Challenges in Modeling Human Brain Development and Neurodevelopmental Diseases". International Journal of Molecular Sciences 24, n.º 15 (7 de agosto de 2023): 12528. http://dx.doi.org/10.3390/ijms241512528.
Texto completoMensah-Brown, Kobina G., James Lim, Dennis Jgamadze, Guo-li Ming, Hongjun Song, John A. Wolf y Han-Chiao I. Chen. "96101 Temporal Evolution of Neural Activity in Human Brain Organoids". Journal of Clinical and Translational Science 5, s1 (marzo de 2021): 23. http://dx.doi.org/10.1017/cts.2021.464.
Texto completoBirch, Jonathan. "When is a brain organoid a sentience candidate?" Molecular Psychology: Brain, Behavior, and Society 2 (18 de octubre de 2023): 22. http://dx.doi.org/10.12688/molpsychol.17524.1.
Texto completoTanaka, Yoshiaki y In-Hyun Park. "Regional specification and complementation with non-neuroectodermal cells in human brain organoids". Journal of Molecular Medicine 99, n.º 4 (2 de marzo de 2021): 489–500. http://dx.doi.org/10.1007/s00109-021-02051-9.
Texto completoKatayama, Masafumi, Manabu Onuma, Noriko Kato, Nobuyoshi Nakajima y Tomokazu Fukuda. "Organoids containing neural-like cells derived from chicken iPSCs respond to poly:IC through the RLR family". PLOS ONE 18, n.º 5 (4 de mayo de 2023): e0285356. http://dx.doi.org/10.1371/journal.pone.0285356.
Texto completoZhou, Gang, Siyuan Pang, Yongning Li y Jun Gao. "Progress in the generation of spinal cord organoids over the past decade and future perspectives". Neural Regeneration Research 19, n.º 5 (22 de septiembre de 2023): 1013–19. http://dx.doi.org/10.4103/1673-5374.385280.
Texto completoLuo, Kevin. "Application of neural organoids in studying neurodegenerative diseases". Theoretical and Natural Science 15, n.º 1 (4 de diciembre de 2023): 166–70. http://dx.doi.org/10.54254/2753-8818/15/20240474.
Texto completoKiaee, Kiavash, Yasamin A. Jodat, Nicole J. Bassous, Navneet Matharu y Su Ryon Shin. "Transcriptomic Mapping of Neural Diversity, Differentiation and Functional Trajectory in iPSC-Derived 3D Brain Organoid Models". Cells 10, n.º 12 (5 de diciembre de 2021): 3422. http://dx.doi.org/10.3390/cells10123422.
Texto completoSureshkumar, Akash, Shilpa Bisht y Hariharan Easwaran. "Abstract 230: Deep learning embedding-based segmentation for morphological analysis in organoids". Cancer Research 84, n.º 6_Supplement (22 de marzo de 2024): 230. http://dx.doi.org/10.1158/1538-7445.am2024-230.
Texto completoBao, Zhongyuan, Kaiheng Fang, Zong Miao, Chong Li, Chaojuan Yang, Qiang Yu, Chen Zhang, Zengli Miao, Yan Liu y Jing Ji. "Human Cerebral Organoid Implantation Alleviated the Neurological Deficits of Traumatic Brain Injury in Mice". Oxidative Medicine and Cellular Longevity 2021 (22 de noviembre de 2021): 1–16. http://dx.doi.org/10.1155/2021/6338722.
Texto completoCamp, J. Gray, Farhath Badsha, Marta Florio, Sabina Kanton, Tobias Gerber, Michaela Wilsch-Bräuninger, Eric Lewitus et al. "Human cerebral organoids recapitulate gene expression programs of fetal neocortex development". Proceedings of the National Academy of Sciences 112, n.º 51 (7 de diciembre de 2015): 15672–77. http://dx.doi.org/10.1073/pnas.1520760112.
Texto completoHarary, Paul M., Rachel Blue, Mackenzie Castellanos, Mehek Dedhia, Sarah Hamimi, Dennis Jgamadze, Benjamin Rees et al. "Human brain organoid transplantation: ethical implications of enhancing specific cerebral functions in small-animal models". Molecular Psychology: Brain, Behavior, and Society 2 (6 de junio de 2023): 14. http://dx.doi.org/10.12688/molpsychol.17544.1.
Texto completoda Silva, Bárbara, Ryan K. Mathew, Euan S. Polson, Jennifer Williams y Heiko Wurdak. "Spontaneous Glioblastoma Spheroid Infiltration of Early-Stage Cerebral Organoids Models Brain Tumor Invasion". SLAS DISCOVERY: Advancing the Science of Drug Discovery 23, n.º 8 (15 de marzo de 2018): 862–68. http://dx.doi.org/10.1177/2472555218764623.
Texto completoHopkins, Hannah K., Elizabeth M. Traverse y Kelli L. Barr. "Methodologies for Generating Brain Organoids to Model Viral Pathogenesis in the CNS". Pathogens 10, n.º 11 (19 de noviembre de 2021): 1510. http://dx.doi.org/10.3390/pathogens10111510.
Texto completoKim, Min Soo, Da-Hyun Kim, Hyun Kyoung Kang, Myung Geun Kook, Soon Won Choi y Kyung-Sun Kang. "Modeling of Hypoxic Brain Injury through 3D Human Neural Organoids". Cells 10, n.º 2 (25 de enero de 2021): 234. http://dx.doi.org/10.3390/cells10020234.
Texto completoMukashyaka, Patience, Pooja Kumar, Dave Mellert, Shadae Nicholas, Javad Noorbakhsh, Mattia Brugiolo, Olga Anczukow, Edison T. Liu y Jeffrey H. Chuang. "Abstract 186: Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology". Cancer Research 83, n.º 7_Supplement (4 de abril de 2023): 186. http://dx.doi.org/10.1158/1538-7445.am2023-186.
Texto completoWu, Yihui, Jin Qiu, Shuilian Chen, Xi Chen, Jing Zhang, Jiejie Zhuang, Sian Liu et al. "Comparison of the Response to the CXCR4 Antagonist AMD3100 during the Development of Retinal Organoids Derived from ES Cells and Zebrafish Retina". International Journal of Molecular Sciences 23, n.º 13 (25 de junio de 2022): 7088. http://dx.doi.org/10.3390/ijms23137088.
Texto completoSapir, Gal, Daniel J. Steinberg, Rami I. Aqeilan y Rachel Katz-Brull. "Real-Time Non-Invasive and Direct Determination of Lactate Dehydrogenase Activity in Cerebral Organoids—A New Method to Characterize the Metabolism of Brain Organoids?" Pharmaceuticals 14, n.º 9 (30 de agosto de 2021): 878. http://dx.doi.org/10.3390/ph14090878.
Texto completoTomaskovic-Crook, Eva, Sarah Liza Higginbottom, Binbin Zhang, Justin Bourke, Gordon George Wallace y Jeremy Micah Crook. "Defined, Simplified, Scalable, and Clinically Compatible Hydrogel-Based Production of Human Brain Organoids". Organoids 2, n.º 1 (11 de enero de 2023): 20–36. http://dx.doi.org/10.3390/organoids2010002.
Texto completoCarpena, Nathaniel T., So-Young Chang, Ji-Eun Choi, Jae Yun Jung y Min Young Lee. "Wnt Modulation Enhances Otic Differentiation by Facilitating the Enucleation Process but Develops Unnecessary Cardiac Structures". International Journal of Molecular Sciences 22, n.º 19 (24 de septiembre de 2021): 10306. http://dx.doi.org/10.3390/ijms221910306.
Texto completoRevah, Omer, Felicity Gore, Kevin W. Kelley, Jimena Andersen, Noriaki Sakai, Xiaoyu Chen, Min-Yin Li et al. "Maturation and circuit integration of transplanted human cortical organoids". Nature 610, n.º 7931 (12 de octubre de 2022): 319–26. http://dx.doi.org/10.1038/s41586-022-05277-w.
Texto completoPeterson, James C. "Evangelicals, Neural Organoids, and Chimeras". Perspectives on Science and Christian Faith 73, n.º 1 (marzo de 2021): 1–3. http://dx.doi.org/10.56315/pscf3-21peterson.
Texto completoHan, Yilin, Marianne King, Evgenii Tikhomirov, Povilas Barasa, Cleide Dos Santos Souza, Jonas Lindh, Daiva Baltriukiene et al. "Towards 3D Bioprinted Spinal Cord Organoids". International Journal of Molecular Sciences 23, n.º 10 (21 de mayo de 2022): 5788. http://dx.doi.org/10.3390/ijms23105788.
Texto completoRiedel, Nicole, Flavia W. De Faria, Carolin Walter, Jan M. Bruder y Kornelius Kerl. "MODL-10. Tumor-brain-organoids as a model for pediatric brain tumors research". Neuro-Oncology 24, Supplement_1 (1 de junio de 2022): i170. http://dx.doi.org/10.1093/neuonc/noac079.633.
Texto completoConforti, P., D. Besusso, V. D. Bocchi, A. Faedo, E. Cesana, G. Rossetti, V. Ranzani et al. "Faulty neuronal determination and cell polarization are reverted by modulating HD early phenotypes". Proceedings of the National Academy of Sciences 115, n.º 4 (8 de enero de 2018): E762—E771. http://dx.doi.org/10.1073/pnas.1715865115.
Texto completoLayrolle, Pierre, Pierre Payoux y Stéphane Chavanas. "Message in a Scaffold: Natural Biomaterials for Three-Dimensional (3D) Bioprinting of Human Brain Organoids". Biomolecules 13, n.º 1 (22 de diciembre de 2022): 25. http://dx.doi.org/10.3390/biom13010025.
Texto completoMatsui, Takeshi K., Yuichiro Tsuru, Koichi Hasegawa y Ken-ichiro Kuwako. "Vascularization of Human Brain Organoids". Stem Cells 39, n.º 8 (31 de marzo de 2021): 1017–24. http://dx.doi.org/10.1002/stem.3368.
Texto completoZhang, Ru, Juan Lu, Gang Pei y Shichao Huang. "Galangin Rescues Alzheimer’s Amyloid-β Induced Mitophagy and Brain Organoid Growth Impairment". International Journal of Molecular Sciences 24, n.º 4 (8 de febrero de 2023): 3398. http://dx.doi.org/10.3390/ijms24043398.
Texto completoDelepine, Chloe, Vincent A. Pham, Hayley W. S. Tsang y Mriganka Sur. "GSK3ß inhibitor CHIR 99021 modulates cerebral organoid development through dose-dependent regulation of apoptosis, proliferation, differentiation and migration". PLOS ONE 16, n.º 5 (5 de mayo de 2021): e0251173. http://dx.doi.org/10.1371/journal.pone.0251173.
Texto completoBombieri, Cristina, Andrea Corsi, Elisabetta Trabetti, Alessandra Ruggiero, Giulia Marchetto, Gaetano Vattemi, Maria Teresa Valenti, Donato Zipeto y Maria Grazia Romanelli. "Advanced Cellular Models for Rare Disease Study: Exploring Neural, Muscle and Skeletal Organoids". International Journal of Molecular Sciences 25, n.º 2 (13 de enero de 2024): 1014. http://dx.doi.org/10.3390/ijms25021014.
Texto completoKanber, Deniz, Julia Woestefeld, Hannah Döpper, Morgane Bozet, Alexandra Brenzel, Janine Altmüller, Fabian Kilpert, Dietmar Lohmann, Claudia Pommerenke y Laura Steenpass. "RB1-Negative Retinal Organoids Display Proliferation of Cone Photoreceptors and Loss of Retinal Differentiation". Cancers 14, n.º 9 (26 de abril de 2022): 2166. http://dx.doi.org/10.3390/cancers14092166.
Texto completoMukashyaka, Patience, Pooja Kumar, David J. Mellert, Shadae Nicholas, Javad Noorbakhsh, Mattia Brugiolo, Olga Anczukow, Edison T. Liu y Jeffrey H. Chuang. "Abstract A032: Cellos: High-throughput deconvolution of 3D organoid dynamics at cellular resolution for cancer pharmacology". Cancer Research 84, n.º 3_Supplement_2 (1 de febrero de 2024): A032. http://dx.doi.org/10.1158/1538-7445.canevol23-a032.
Texto completoWörsdörfer, Philipp, Takashi I, Izumi Asahina, Yoshinori Sumita y Süleyman Ergün. "Do not keep it simple: recent advances in the generation of complex organoids". Journal of Neural Transmission 127, n.º 11 (8 de mayo de 2020): 1569–77. http://dx.doi.org/10.1007/s00702-020-02198-8.
Texto completoMrza, Muhammad Asif, Jitian He y Youwei Wang. "Integration of iPSC-Derived Microglia into Brain Organoids for Neurological Research". International Journal of Molecular Sciences 25, n.º 6 (9 de marzo de 2024): 3148. http://dx.doi.org/10.3390/ijms25063148.
Texto completoJones, Peter D., Tom Stumpp, Michael Mierzejewski, Domenic Pascual y Angelika Stumpf. "Scalable mesh microelectrode arrays for neural spheroids and organoids". Current Directions in Biomedical Engineering 9, n.º 1 (1 de septiembre de 2023): 575–78. http://dx.doi.org/10.1515/cdbme-2023-1144.
Texto completoBirch, Jonathan y Heather Browning. "Neural Organoids and the Precautionary Principle". American Journal of Bioethics 21, n.º 1 (29 de diciembre de 2020): 56–58. http://dx.doi.org/10.1080/15265161.2020.1845858.
Texto completoLeMieux, Julianna. "Neural Organoids Making Connections, Getting Real". Genetic Engineering & Biotechnology News 42, n.º 11 (1 de noviembre de 2022): 18–21. http://dx.doi.org/10.1089/gen.42.11.07.
Texto completoYan, Yuanwei, Julie Bejoy, Mark Marzano y Yan Li. "The Use of Pluripotent Stem Cell-Derived Organoids to Study Extracellular Matrix Development during Neural Degeneration". Cells 8, n.º 3 (14 de marzo de 2019): 242. http://dx.doi.org/10.3390/cells8030242.
Texto completoFerdaos, Nurfarhana, Sally Lowell y John O. Mason. "Pax6 mutant cerebral organoids partially recapitulate phenotypes of Pax6 mutant mouse strains". PLOS ONE 17, n.º 11 (28 de noviembre de 2022): e0278147. http://dx.doi.org/10.1371/journal.pone.0278147.
Texto completoCostamagna, Gianluca, Giacomo Pietro Comi y Stefania Corti. "Advancing Drug Discovery for Neurological Disorders Using iPSC-Derived Neural Organoids". International Journal of Molecular Sciences 22, n.º 5 (6 de marzo de 2021): 2659. http://dx.doi.org/10.3390/ijms22052659.
Texto completoBlue, Rachel, Stephen P. Miranda, Ben Jiahe Gu y H. Isaac Chen. "A Primer on Human Brain Organoids for the Neurosurgeon". Neurosurgery 87, n.º 4 (18 de mayo de 2020): 620–29. http://dx.doi.org/10.1093/neuros/nyaa171.
Texto completoKhare, Sonal, Chi-Sing Ho, Madhavi Kannan, Brian Larsen, Brandon Mapes, Jenna Shaxted, Jagadish Venkataraman y Ameen Salahudeen. "62 Applying machine vision to empower preclinical development of cell engager and adoptive cell therapeutics in patient-derived organoid models of solid tumors". Journal for ImmunoTherapy of Cancer 9, Suppl 2 (noviembre de 2021): A70. http://dx.doi.org/10.1136/jitc-2021-sitc2021.062.
Texto completoD’Aiuto, Leonardo, Jill K. Caldwell, Callen T. Wallace, Tristan R. Grams, Maribeth A. Wesesky, Joel A. Wood, Simon C. Watkins, Paul R. Kinchington, David C. Bloom y Vishwajit L. Nimgaonkar. "The Impaired Neurodevelopment of Human Neural Rosettes in HSV-1-Infected Early Brain Organoids". Cells 11, n.º 22 (9 de noviembre de 2022): 3539. http://dx.doi.org/10.3390/cells11223539.
Texto completoRockel, Anna F., Süleyman Ergün y Philipp Wörsdörfer. "Erzeugung menschlicher Nervengewebe in der Kulturschale". BIOspektrum 29, n.º 7 (noviembre de 2023): 752–54. http://dx.doi.org/10.1007/s12268-023-2063-z.
Texto completoLi, Minghui, Heng Sun, Zongkun Hou, Shilei Hao, Liang Jin y Bochu Wang. "Engineering the Physical Microenvironment into Neural Organoids for Neurogenesis and Neurodevelopment". Small, 28 de septiembre de 2023. http://dx.doi.org/10.1002/smll.202306451.
Texto completoOsaki, Tatsuya, Tomoya Duenki, Siu Yu A. Chow, Yasuhiro Ikegami, Romain Beaubois, Timothée Levi, Nao Nakagawa-Tamagawa, Yoji Hirano y Yoshiho Ikeuchi. "Complex activity and short-term plasticity of human cerebral organoids reciprocally connected with axons". Nature Communications 15, n.º 1 (10 de abril de 2024). http://dx.doi.org/10.1038/s41467-024-46787-7.
Texto completoMajumder, Joydeb, Elizabeth E. Torr, Elizabeth A. Aisenbrey, Connie S. Lebakken, Peter F. Favreau, William D. Richards, Yanhong Yin, Qiang Chang y William L. Murphy. "Human induced pluripotent stem cell-derived planar neural organoids assembled on synthetic hydrogels". Journal of Tissue Engineering 15 (enero de 2024). http://dx.doi.org/10.1177/20417314241230633.
Texto completo