Literatura académica sobre el tema "Neural networks (Computer science)"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Neural networks (Computer science)".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Neural networks (Computer science)"
Mijwel, Maad M., Adam Esen y Aysar Shamil. "Overview of Neural Networks". Babylonian Journal of Machine Learning 2023 (11 de agosto de 2023): 42–45. http://dx.doi.org/10.58496/bjml/2023/008.
Texto completoCottrell, G. W. "COMPUTER SCIENCE: New Life for Neural Networks". Science 313, n.º 5786 (28 de julio de 2006): 454–55. http://dx.doi.org/10.1126/science.1129813.
Texto completoLi, Xiao Guang. "Research on the Development and Applications of Artificial Neural Networks". Applied Mechanics and Materials 556-562 (mayo de 2014): 6011–14. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.6011.
Texto completoSchöneburg, E. "Neural networks hunt computer viruses". Neurocomputing 2, n.º 5-6 (julio de 1991): 243–48. http://dx.doi.org/10.1016/0925-2312(91)90027-9.
Texto completoTurega, M. A. "Neural Networks". Computer Journal 35, n.º 3 (1 de junio de 1992): 290. http://dx.doi.org/10.1093/comjnl/35.3.290.
Texto completoWidrow, Bernard, David E. Rumelhart y Michael A. Lehr. "Neural networks". Communications of the ACM 37, n.º 3 (marzo de 1994): 93–105. http://dx.doi.org/10.1145/175247.175257.
Texto completoBegum, Afsana, Md Masiur Rahman y Sohana Jahan. "Medical diagnosis using artificial neural networks". Mathematics in Applied Sciences and Engineering 5, n.º 2 (4 de junio de 2024): 149–64. http://dx.doi.org/10.5206/mase/17138.
Texto completoYen, Gary G. y Haiming Lu. "Hierarchical Rank Density Genetic Algorithm for Radial-Basis Function Neural Network Design". International Journal of Computational Intelligence and Applications 03, n.º 03 (septiembre de 2003): 213–32. http://dx.doi.org/10.1142/s1469026803000975.
Texto completoCavallaro, Lucia, Ovidiu Bagdasar, Pasquale De Meo, Giacomo Fiumara y Antonio Liotta. "Artificial neural networks training acceleration through network science strategies". Soft Computing 24, n.º 23 (9 de septiembre de 2020): 17787–95. http://dx.doi.org/10.1007/s00500-020-05302-y.
Texto completoKumar, G. Prem y P. Venkataram. "Network restoration using recurrent neural networks". International Journal of Network Management 8, n.º 5 (septiembre de 1998): 264–73. http://dx.doi.org/10.1002/(sici)1099-1190(199809/10)8:5<264::aid-nem298>3.0.co;2-o.
Texto completoTesis sobre el tema "Neural networks (Computer science)"
Landassuri, Moreno Victor Manuel. "Evolution of modular neural networks". Thesis, University of Birmingham, 2012. http://etheses.bham.ac.uk//id/eprint/3243/.
Texto completoSloan, Cooper Stokes. "Neural bus networks". Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/119711.
Texto completoThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references (pages 65-68).
Bus schedules are unreliable, leaving passengers waiting and increasing commute times. This problem can be solved by modeling the traffic network, and delivering predicted arrival times to passengers. Research attempts to model traffic networks use historical, statistical and learning based models, with learning based models achieving the best results. This research compares several neural network architectures trained on historical data from Boston buses. Three models are trained: multilayer perceptron, convolutional neural network and recurrent neural network. Recurrent neural networks show the best performance when compared to feed forward models. This indicates that neural time series models are effective at modeling bus networks. The large amount of data available for training bus network models and the effectiveness of large neural networks at modeling this data show that great progress can be made in improving commutes for passengers.
by Cooper Stokes Sloan.
M. Eng.
Khan, Altaf Hamid. "Feedforward neural networks with constrained weights". Thesis, University of Warwick, 1996. http://wrap.warwick.ac.uk/4332/.
Texto completoZaghloul, Waleed A. Lee Sang M. "Text mining using neural networks". Lincoln, Neb. : University of Nebraska-Lincoln, 2005. http://0-www.unl.edu.library.unl.edu/libr/Dissertations/2005/Zaghloul.pdf.
Texto completoTitle from title screen (sites viewed on Oct. 18, 2005). PDF text: 100 p. : col. ill. Includes bibliographical references (p. 95-100 of dissertation).
Hadjifaradji, Saeed. "Learning algorithms for restricted neural networks". Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape3/PQDD_0016/NQ48102.pdf.
Texto completoCheung, Ka Kit. "Neural networks for optimization". HKBU Institutional Repository, 2001. http://repository.hkbu.edu.hk/etd_ra/291.
Texto completoAhamed, Woakil Uddin. "Quantum recurrent neural networks for filtering". Thesis, University of Hull, 2009. http://hydra.hull.ac.uk/resources/hull:2411.
Texto completoWilliams, Bryn V. "Evolutionary neural networks : models and applications". Thesis, Aston University, 1995. http://publications.aston.ac.uk/10635/.
Texto completoDe, Jongh Albert. "Neural network ensembles". Thesis, Stellenbosch : Stellenbosch University, 2004. http://hdl.handle.net/10019.1/50035.
Texto completoENGLISH ABSTRACT: It is possible to improve on the accuracy of a single neural network by using an ensemble of diverse and accurate networks. This thesis explores diversity in ensembles and looks at the underlying theory and mechanisms employed to generate and combine ensemble members. Bagging and boosting are studied in detail and I explain their success in terms of well-known theoretical instruments. An empirical evaluation of their performance is conducted and I compare them to a single classifier and to each other in terms of accuracy and diversity.
AFRIKAANSE OPSOMMING: Dit is moontlik om op die akkuraatheid van 'n enkele neurale netwerk te verbeter deur 'n ensemble van diverse en akkurate netwerke te gebruik. Hierdie tesis ondersoek diversiteit in ensembles, asook die meganismes waardeur lede van 'n ensemble geskep en gekombineer kan word. Die algoritmes "bagging" en "boosting" word in diepte bestudeer en hulle sukses word aan die hand van bekende teoretiese instrumente verduidelik. Die prestasie van hierdie twee algoritmes word eksperimenteel gemeet en hulle akkuraatheid en diversiteit word met 'n enkele netwerk vergelyk.
Lee, Ji Young Ph D. Massachusetts Institute of Technology. "Information extraction with neural networks". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/111905.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 85-97).
Electronic health records (EHRs) have been widely adopted, and are a gold mine for clinical research. However, EHRs, especially their text components, remain largely unexplored due to the fact that they must be de-identified prior to any medical investigation. Existing systems for de-identification rely on manual rules or features, which are time-consuming to develop and fine-tune for new datasets. In this thesis, we propose the first de-identification system based on artificial neural networks (ANNs), which achieves state-of-the-art results without any human-engineered features. The ANN architecture is extended to incorporate features, further improving the de-identification performance. Under practical considerations, we explore transfer learning to take advantage of large annotated dataset to improve the performance on datasets with limited number of annotations. The ANN-based system is publicly released as an easy-to-use software package for general purpose named-entity recognition as well as de-identification. Finally, we present an ANN architecture for relation extraction, which ranked first in the SemEval-2017 task 10 (ScienceIE) for relation extraction in scientific articles (subtask C).
by Ji Young Lee.
Ph. D.
Libros sobre el tema "Neural networks (Computer science)"
Dominique, Valentin y Edelman Betty, eds. Neural networks. Thousand Oaks, Calif: Sage Publications, 1999.
Buscar texto completo1931-, Taylor John y UNICOM Seminars, eds. Neural networks. Henley-on-Thames: A. Waller, 1995.
Buscar texto completo1948-, Vandewalle J. y Roska T, eds. Cellular neural networks. Chichester [England]: Wiley, 1993.
Buscar texto completoBischof, Horst. Pyramidal neural networks. Mahwah, NJ: Lawrence Erlbaum Associates, 1995.
Buscar texto completoKwon, Seoyun J. Artificial neural networks. Hauppauge, N.Y: Nova Science Publishers, 2010.
Buscar texto completoHoffmann, Norbert. Simulating neural networks. Wiesbaden: Vieweg, 1994.
Buscar texto completoMaass, Wolfgang, 1949 Aug. 21- y Bishop Christopher M, eds. Pulsed neural networks. Cambridge, Mass: MIT Press, 1999.
Buscar texto completoCaudill, Maureen. Understanding neural networks: Computer explorations. Cambridge, Mass: MIT Press, 1993.
Buscar texto completoHu, Xiaolin y P. Balasubramaniam. Recurrent neural networks. Rijek, Crotia: InTech, 2008.
Buscar texto completoBaram, Yoram. Nested neural networks. Moffett Field, Calif: National Aeronautics and Space Administration, Ames Research Center, 1988.
Buscar texto completoCapítulos de libros sobre el tema "Neural networks (Computer science)"
ElAarag, Hala. "Neural Networks". En SpringerBriefs in Computer Science, 11–16. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-4893-7_3.
Texto completoSiegelmann, Hava T. "Recurrent neural networks". En Computer Science Today, 29–45. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0015235.
Texto completoYan, Wei Qi. "Convolutional Neural Networks and Recurrent Neural Networks". En Texts in Computer Science, 69–124. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4823-9_3.
Texto completoErtel, Wolfgang. "Neural Networks". En Undergraduate Topics in Computer Science, 221–56. London: Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-299-5_9.
Texto completoErtel, Wolfgang. "Neural Networks". En Undergraduate Topics in Computer Science, 245–87. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-58487-4_9.
Texto completoFeldman, Jerome A. "Neural Networks and Computer Science". En Opportunities and Constraints of Parallel Computing, 37–38. New York, NY: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4613-9668-0_10.
Texto completoKruse, Rudolf, Christian Borgelt, Christian Braune, Sanaz Mostaghim y Matthias Steinbrecher. "General Neural Networks". En Texts in Computer Science, 37–46. London: Springer London, 2016. http://dx.doi.org/10.1007/978-1-4471-7296-3_4.
Texto completoKruse, Rudolf, Christian Borgelt, Frank Klawonn, Christian Moewes, Matthias Steinbrecher y Pascal Held. "General Neural Networks". En Texts in Computer Science, 37–46. London: Springer London, 2013. http://dx.doi.org/10.1007/978-1-4471-5013-8_4.
Texto completoKruse, Rudolf, Sanaz Mostaghim, Christian Borgelt, Christian Braune y Matthias Steinbrecher. "General Neural Networks". En Texts in Computer Science, 39–52. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-42227-1_4.
Texto completoBetti, Alessandro, Marco Gori y Stefano Melacci. "Foveated Neural Networks". En SpringerBriefs in Computer Science, 63–72. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-90987-1_4.
Texto completoActas de conferencias sobre el tema "Neural networks (Computer science)"
Doncow, Sergey, Leonid Orbachevskyi, Valentin Birukow y Nina V. Stepanova. "Artificial Kohonen's neural networks for computer capillarometry". En Optical Information Science and Technology, editado por Andrei L. Mikaelian. SPIE, 1998. http://dx.doi.org/10.1117/12.304962.
Texto completoNowak, Jakub, Marcin Korytkowski y Rafał Scherer. "Classification of Computer Network Users with Convolutional Neural Networks". En 2018 Federated Conference on Computer Science and Information Systems. IEEE, 2018. http://dx.doi.org/10.15439/2018f321.
Texto completoShastri, Bhavin J., Volker Sorger y Nir Rotenberg. "In situ Training of Silicon Photonic Neural Networks: from Classical to Quantum". En CLEO: Science and Innovations. Washington, D.C.: Optica Publishing Group, 2023. http://dx.doi.org/10.1364/cleo_si.2023.sm4j.1.
Texto completoDias, L. P., J. J. F. Cerqueira, K. D. R. Assis y R. C. Almeida. "Using artificial neural network in intrusion detection systems to computer networks". En 2017 9th Computer Science and Electronic Engineering (CEEC). IEEE, 2017. http://dx.doi.org/10.1109/ceec.2017.8101615.
Texto completoAraújo, Georger y Célia Ralha. "Computer Forensic Document Clustering with ART1 Neural Networks". En The Sixth International Conference on Forensic Computer Science. ABEAT, 2011. http://dx.doi.org/10.5769/c2011011.
Texto completoWang, Huiran y Ruifang Ma. "Optimization of Neural Networks for Network Intrusion Detection". En 2009 First International Workshop on Education Technology and Computer Science. IEEE, 2009. http://dx.doi.org/10.1109/etcs.2009.102.
Texto completoEilermann, Sebastian, Christoph Petroll, Philipp Hoefer y Oliver Niggemann. "3D Multi-Criteria Design Generation and Optimization of an Engine Mount for an Unmanned Air Vehicle Using a Conditional Variational Autoencoder". En Computer Science Research Notes. University of West Bohemia, Czech Republic, 2024. http://dx.doi.org/10.24132/csrn.3401.22.
Texto completoSakas, D. P., D. S. Vlachos, T. E. Simos, Theodore E. Simos y George Psihoyios. "Fuzzy Neural Networks for Decision Support in Negotiation". En INTERNATIONAL ELECTRONIC CONFERENCE ON COMPUTER SCIENCE. AIP, 2008. http://dx.doi.org/10.1063/1.3037115.
Texto completo"Speech Emotion Recognition using Convolutional Neural Networks and Recurrent Neural Networks with Attention Model". En 2019 the 9th International Workshop on Computer Science and Engineering. WCSE, 2019. http://dx.doi.org/10.18178/wcse.2019.06.044.
Texto completoČajić, Elvir, Irma Ibrišimović, Alma Šehanović, Damir Bajrić y Julija Ščekić. "Fuzzy Logic And Neural Networks For Disease Detection And Simulation In Matlab". En 9th International Conference on Computer Science, Engineering and Applications. Academy & Industry Research Collaboration Center, 2023. http://dx.doi.org/10.5121/csit.2023.132302.
Texto completoInformes sobre el tema "Neural networks (Computer science)"
Markova, Oksana, Serhiy Semerikov y Maiia Popel. СoCalc as a Learning Tool for Neural Network Simulation in the Special Course “Foundations of Mathematic Informatics”. Sun SITE Central Europe, mayo de 2018. http://dx.doi.org/10.31812/0564/2250.
Texto completoSemerikov, Serhiy, Illia Teplytskyi, Yuliia Yechkalo, Oksana Markova, Vladimir Soloviev y Arnold Kiv. Computer Simulation of Neural Networks Using Spreadsheets: Dr. Anderson, Welcome Back. [б. в.], junio de 2019. http://dx.doi.org/10.31812/123456789/3178.
Texto completoGrossberg, Stephen. Instrumentation for Scientific Computing in Neural Networks, Information Science, Artificial Intelligence, and Applied Mathematics. Fort Belvoir, VA: Defense Technical Information Center, octubre de 1987. http://dx.doi.org/10.21236/ada189981.
Texto completoSemerikov, Serhiy O., Illia O. Teplytskyi, Yuliia V. Yechkalo y Arnold E. Kiv. Computer Simulation of Neural Networks Using Spreadsheets: The Dawn of the Age of Camelot. [б. в.], noviembre de 2018. http://dx.doi.org/10.31812/123456789/2648.
Texto completoFarhi, Edward y Hartmut Neven. Classification with Quantum Neural Networks on Near Term Processors. Web of Open Science, diciembre de 2020. http://dx.doi.org/10.37686/qrl.v1i2.80.
Texto completoWillson. L51756 State of the Art Intelligent Control for Large Engines. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), septiembre de 1996. http://dx.doi.org/10.55274/r0010423.
Texto completoModlo, Yevhenii O., Serhiy O. Semerikov, Ruslan P. Shajda, Stanislav T. Tolmachev y Oksana M. Markova. Methods of using mobile Internet devices in the formation of the general professional component of bachelor in electromechanics competency in modeling of technical objects. [б. в.], julio de 2020. http://dx.doi.org/10.31812/123456789/3878.
Texto completoSAINI, RAVINDER, AbdulKhaliq Alshadid y Lujain Aldosari. Investigation on the application of artificial intelligence in prosthodontics. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, diciembre de 2022. http://dx.doi.org/10.37766/inplasy2022.12.0096.
Texto completoJohansen, Richard, Alan Katzenmeyer, Kaytee Pokrzywinski y Molly Reif. A review of sensor-based approaches for monitoring rapid response treatments of cyanoHABs. Engineer Research and Development Center (U.S.), julio de 2023. http://dx.doi.org/10.21079/11681/47261.
Texto completoSeginer, Ido, James Jones, Per-Olof Gutman y Eduardo Vallejos. Optimal Environmental Control for Indeterminate Greenhouse Crops. United States Department of Agriculture, agosto de 1997. http://dx.doi.org/10.32747/1997.7613034.bard.
Texto completo