Tesis sobre el tema "Neural network adaptation"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Neural network adaptation".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Donati, Lorenzo. "Domain Adaptation through Deep Neural Networks for Health Informatics". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2017. http://amslaurea.unibo.it/14888/.
Texto completoHaskey, Stephen. "A modified One-Class-One-Network ANN architecture for dynamic phoneme adaptation". Thesis, Loughborough University, 1998. https://dspace.lboro.ac.uk/2134/12099.
Texto completoWen, Tsung-Hsien. "Recurrent neural network language generation for dialogue systems". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275648.
Texto completoGangireddy, Siva Reddy. "Recurrent neural network language models for automatic speech recognition". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28990.
Texto completoTomashenko, Natalia. "Speaker adaptation of deep neural network acoustic models using Gaussian mixture model framework in automatic speech recognition systems". Thesis, Le Mans, 2017. http://www.theses.fr/2017LEMA1040/document.
Texto completoDifferences between training and testing conditions may significantly degrade recognition accuracy in automatic speech recognition (ASR) systems. Adaptation is an efficient way to reduce the mismatch between models and data from a particular speaker or channel. There are two dominant types of acoustic models (AMs) used in ASR: Gaussian mixture models (GMMs) and deep neural networks (DNNs). The GMM hidden Markov model (GMM-HMM) approach has been one of the most common technique in ASR systems for many decades. Speaker adaptation is very effective for these AMs and various adaptation techniques have been developed for them. On the other hand, DNN-HMM AMs have recently achieved big advances and outperformed GMM-HMM models for various ASR tasks. However, speaker adaptation is still very challenging for these AMs. Many adaptation algorithms that work well for GMMs systems cannot be easily applied to DNNs because of the different nature of these models. The main purpose of this thesis is to develop a method for efficient transfer of adaptation algorithms from the GMM framework to DNN models. A novel approach for speaker adaptation of DNN AMs is proposed and investigated. The idea of this approach is based on using so-called GMM-derived features as input to a DNN. The proposed technique provides a general framework for transferring adaptation algorithms, developed for GMMs, to DNN adaptation. It is explored for various state-of-the-art ASR systems and is shown to be effective in comparison with other speaker adaptation techniques and complementary to them
Buttar, Sarpreet Singh. "Applying Artificial Neural Networks to Reduce the Adaptation Space in Self-Adaptive Systems : an exploratory work". Thesis, Linnéuniversitetet, Institutionen för datavetenskap och medieteknik (DM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-87117.
Texto completoPalapelas, Kantola Philip. "Extreme Quantile Estimation of Downlink Radio Channel Quality". Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-177657.
Texto completoFic, Miloslav. "Adaptace parametrů ve fuzzy systémech". Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-221163.
Texto completoVu, Hien Duc. "Adaptation des méthodes d'apprentissage automatique pour la détection de défauts d'arc électriques". Electronic Thesis or Diss., Université de Lorraine, 2019. http://docnum.univ-lorraine.fr/ulprive/DDOC_T_2019_0152_VU.pdf.
Texto completoThe detection of electric arcs occurring in an electrical network by machine learning approaches represents the heart of the work presented in this thesis. The problem was first considered as a classification of fixed-size time series with two classes: normal and default. This first part is based on the work of the literature where the detection algorithms are organized mainly on a step of the transformation of the signals acquired on the network, followed by a step of extraction of descriptive characteristics and finally a step of decision. The multi-criteria approach adopted here aims to respond to systematic classification errors. A methodology for selecting the best combinations, transformation, and descriptors has been proposed by using learning solutions. As the development of relevant descriptors is always difficult, differents solutions offered by deep learning has also been studied. In a second phase, the study focused on the variable aspects in time of the fault detection. Two statistical decision paths have been explored, one based on the sequential probabilistic test (SPRT) and the other based on artificial neural networks LSTM (Long Short Time Memory Network). Each of these two methods exploits in its way the duration a first classification step between 0 and 1 (normal, default). The decision by SPRT uses an integration of the initial classification. LSTM learns to classify data with variable time. The results of the LSTM network are very promising, but there are a few things to explore. All of this work is based on experiments with the most complete and broadest possible data on the field of 230V alternative networks in a domestic and industrial context. The accuracy obtained is close to 100% in the majority of situations
Ainapure, Abhijeet Narhar. "Application and Performance Enhancement of Intelligent Cross-Domain Fault Diagnosis in Rotating Machinery". University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1623164772153736.
Texto completoGoudarzi, Alireza. "On the Effect of Topology on Learning and Generalization in Random Automata Networks". PDXScholar, 2011. https://pdxscholar.library.pdx.edu/open_access_etds/193.
Texto completoAhn, Euijoon. "Unsupervised Deep Feature Learning for Medical Image Analysis". Thesis, University of Sydney, 2020. https://hdl.handle.net/2123/23002.
Texto completoLin, Fanqing. "Flow Adaptive Video Object Segmentation". BYU ScholarsArchive, 2018. https://scholarsarchive.byu.edu/etd/7067.
Texto completoCherif, Wael. "Adaptation de contexte basée sur la Qualité d'Expérience dans les réseaux Internet du Futur". Phd thesis, Université Rennes 1, 2013. http://tel.archives-ouvertes.fr/tel-00940287.
Texto completoMAGGIOLO, LUCA. "Deep Learning and Advanced Statistical Methods for Domain Adaptation and Classification of Remote Sensing Images". Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1070050.
Texto completoUNO, Yoji, Kouichi TAJI, Masashi OTANI, 洋二 宇野, 宏一 田地 y 将司 大谷. "逆ダイナミックスモデルを用いた反復制御による運動適応". 電子情報通信学会, 2012. https://search.ieice.org/.
Texto completoVOLPI, RICCARDO. "Regularization, Adaptation and Generalization of Neural Networks". Doctoral thesis, Università degli studi di Genova, 2019. http://hdl.handle.net/11567/940909.
Texto completoNarmack, Kirilll. "Dynamic Speed Adaptation for Curves using Machine Learning". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233545.
Texto completoMorgondagens fordon kommer att vara mer sofistikerade, intelligenta och säkra än dagens fordon. Framtiden lutar mot fullständigt autonoma fordon. Detta examensarbete tillhandahåller en datadriven lösning för ett hastighetsanpassningssystem som kan beräkna ett fordons hastighet i kurvor som är lämpligt för förarens körstil, vägens egenskaper och rådande väder. Ett hastighetsanpassningssystem för kurvor har som mål att beräkna en fordonshastighet för kurvor som kan användas i Advanced Driver Assistance Systems (ADAS) eller Autonomous Driving (AD) applikationer. Detta examensarbete utfördes på Volvo Car Corporation. Litteratur kring hastighetsanpassningssystem samt faktorer som påverkar ett fordons hastighet i kurvor studerades. Naturalistisk bilkörningsdata samlades genom att köra bil samt extraherades från Volvos databas och bearbetades. Ett nytt hastighetsanpassningssystem uppfanns, implementerades samt utvärderades. Hastighetsanpassningssystemet visade sig vara kapabelt till att beräkna en lämplig fordonshastighet för förarens körstil under rådande väderförhållanden och vägens egenskaper. Två olika artificiella neuronnätverk samt två matematiska modeller användes för att beräkna fordonets hastighet. Dessa metoder jämfördes och utvärderades.
Silva, Joelson Coelho da. "Uma proposta de controle neural adaptativo para a navegação de veículos autônomos". reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 1999. http://hdl.handle.net/10183/18631.
Texto completoThe robotic equipments were created initially to actuate in closed industrial environments. Improvements have been acquieved in this area. Nowadays, they are no longer limited to perform simple and repetitive tasks in controlled places. New equipments, capable of acting in open environments and doing the most several activities, are being developed. For so much, it is necessary that its control systems accomplish an effective interaction with the world where they are inserted. Therefore, new systems controllers with capacity of a continuous adaptation to the dynamic environments are essential. Artificial neural networks, due to their capacity of dealing wit non-linear problems – mathematically difficult to be solved – are being used to control these kind of processes. Guide a mobile vehicle through an open or controlled environments is a highly non-linear procedure; therefore, the use of an artificial neural nets is quite promising. In spite of its great versatility, they have just been used as mapping systems. Most of them need a training phase so that they can store the diversity of system’s possible states. When they actuate, they simply map their input values (current state) to the solutions previously stored. However, this is not the best approach for open systems, i.e. systems whose situations and possibilities cannot be totally enumerated and that can change in time. This work presents an adaptive neural control methodology to guide a mobile vehicle to its target in environments with fixed or mobile obstacles. Differently from the traditional approaches, the need of a previous training phase of the neural network doesn't exist. The chosen model of artificial neural net promotes a continuous adaptation of the system while it actuates. Sensors are used to provide informations to the net. This way it generates partial solutions that makes the autonomous vehicle gets closer of its goal, until, finally, reach it.
Le, Lan Gaël. "Analyse en locuteurs de collections de documents multimédia". Thesis, Le Mans, 2017. http://www.theses.fr/2017LEMA1020/document.
Texto completoThe task of speaker diarization and linking aims at answering the question "who speaks and when?" in a collection of multimedia recordings. It is an essential step to index audiovisual contents. The task of speaker diarization and linking firstly consists in segmenting each recording in terms of speakers, before linking them across the collection. Aim is, to identify each speaker with a unique anonymous label, even for speakers appearing in multiple recordings, without any knowledge of their identity or number. The challenge of the cross-recording linking is the modeling of the within-speaker/across-recording variability: depending on the recording, a same speaker can appear in multiple acoustic conditions (in a studio, in the street...). The thesis proposes two methods to overcome this issue. Firstly, a novel neural variability compensation method is proposed, using the triplet-loss paradigm for training. Secondly, an iterative unsupervised domain adaptation process is presented, in which the system exploits the information (even inaccurate) about the data it processes, to enhance its performances on the target acoustic domain. Moreover, novel ways of analyzing the results in terms of speaker are explored, to understand the actual performance of a diarization and linking system, beyond the well-known Diarization Error Rate (DER). Systems and methods are evaluated on two TV shows of about 40 episodes, using either a global, or longitudinal linking architecture, and state of the art speaker modeling (i-vector)
Morvan, Ludivine. "Prédiction de la progression du myélome multiple par imagerie TEP : Adaptation des forêts de survie aléatoires et de réseaux de neurones convolutionnels". Thesis, Ecole centrale de Nantes, 2021. http://www.theses.fr/2021ECDN0045.
Texto completoThe aim of this work is to provide a model for survival prediction and biomarker identification in the context of multiple myeloma (MM) using PET (Positron Emission Tomography) imaging and clinical data. This PhD is divided into two parts: The first part provides a model based on Random Survival Forests (RSF). The second part is based on the adaptation of deep learning to survival and to our data. The main contributions are the following: 1) Production of a model based on RSF and PET images allowing the prediction of a risk group for multiple myeloma patients. 2) Determination of biomarkers using this model.3) Demonstration of the interest of PET radiomics.4) Extension of the state of the art of methods for the adaptation of deep learning to a small database and small images. 5) Study of the cost functions used in survival. In addition, we are, to our knowledge, the first to investigate the use of RSFs in the context of MM and PET images, to use self-supervised pre-training with PET images, and, with a survival task, to fit the triplet cost function to survival and to fit a convolutional neural network to MM survival from PET lesions
Roy, Subhankar. "Learning to Adapt Neural Networks Across Visual Domains". Doctoral thesis, Università degli studi di Trento, 2022. http://hdl.handle.net/11572/354343.
Texto completoHaverinen, J. (Janne). "Adaptation through a Stochastic Evolutionary Neuron Migration Process". Doctoral thesis, University of Oulu, 2004. http://urn.fi/urn:isbn:9514273079.
Texto completoSwietojanski, Paweł. "Learning representations for speech recognition using artificial neural networks". Thesis, University of Edinburgh, 2016. http://hdl.handle.net/1842/22835.
Texto completoRAGONESI, RUGGERO. "Addressing Dataset Bias in Deep Neural Networks". Doctoral thesis, Università degli studi di Genova, 2022. http://hdl.handle.net/11567/1069001.
Texto completoEkinci, Ozgur. "Adaptation Of A Control System To Varying Missile Configurations". Master's thesis, METU, 2009. http://etd.lib.metu.edu.tr/upload/3/12611361/index.pdf.
Texto completoKämpfe, Tanja Katharina. "Content-based image retrieval and the use of neural networks for user adaptation". [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=98305066X.
Texto completoMazzapioda, Mariagiovanna. "On the evolutionary co-adaptation of morphology and distributed neural controllers in adaptive agents". Thesis, University of Plymouth, 2012. http://hdl.handle.net/10026.1/1011.
Texto completoPeris, Abril Álvaro. "Interactivity, Adaptation and Multimodality in Neural Sequence-to-sequence Learning". Doctoral thesis, Universitat Politècnica de València, 2020. http://hdl.handle.net/10251/134058.
Texto completo[CAT] El problema conegut com a de seqüència a seqüència consisteix en transformar una seqüència d'entrada en una seqüència d'eixida. Seguint aquesta perspectiva, es pot atacar una àmplia quantitat de problemes, entre els quals destaquen la traducció automàtica, el reconeixement automàtic de la parla o la descripció automàtica d'objectes multimèdia. L'aplicació de xarxes neuronals profundes ha revolucionat aquesta disciplina, i s'han aconseguit progressos notables. Però els sistemes automàtics encara produeixen prediccions que disten molt de ser perfectes. Per a obtindre prediccions de gran qualitat, els sistemes automàtics són utilitzats amb la supervisió d'un humà, qui corregeix els errors. Aquesta tesi se centra principalment en el problema de la traducció de llenguatge natural, el qual s'ataca emprant models enterament neuronals. El nostre objectiu principal és desenvolupar sistemes més eficients. Per a aquesta tasca, les nostres contribucions s'assenten sobre dos pilars fonamentals: com utilitzar el sistema d'una manera més eficient i com aprofitar dades generades durant la fase d'explotació d'aquest. En el primer cas, apliquem el marc teòric conegut com a predicció interactiva a la traducció automàtica neuronal. Aquest procés consisteix en integrar usuari i sistema en un procés de correcció cooperatiu, amb l'objectiu de reduir l'esforç humà emprat per obtindre traduccions d'alta qualitat. Desenvolupem diferents protocols d'interacció per a aquesta tecnologia, aplicant interacció basada en prefixos i en segments, implementats modificant el procés de cerca del sistema. A més a més, busquem mecanismes per a obtindre una interacció amb el sistema més precisa, mantenint la velocitat de generació. Duem a terme una extensa experimentació, que mostra el potencial d'aquestes tècniques: superem l'estat de l'art anterior per un gran marge i observem que els nostres sistemes reaccionen millor a les interacciones humanes. A continuació, estudiem com millorar un sistema neuronal mitjançant les dades generades com a subproducte d'aquest procés de correcció. Per a això, ens basem en dos paradigmes de l'aprenentatge automàtic: l'aprenentatge mostra a mostra i l'aprenentatge actiu. En el primer cas, el sistema s'actualitza immediatament després que l'usuari corregeix una frase. Per tant, el sistema aprén d'una manera contínua a partir de correccions, evitant cometre errors previs i especialitzant-se en un usuari o domini concrets. Avaluem aquests sistemes en una gran quantitat de situacions i per a dominis diferents, que demostren el potencial que tenen els sistemes adaptatius. També duem a terme una avaluació amb traductors professionals, qui varen quedar molt satisfets amb el sistema adaptatiu. A més, van ser més eficients quan ho van usar, si ho comparem amb el sistema estàtic. Pel que fa al segon paradigma, l'apliquem per a l'escenari en el qual han de traduir-se grans quantitats de frases, i la supervisió de totes elles és inviable. En aquest cas, el sistema selecciona les mostres que paga la pena supervisar, traduint la resta automàticament. Aplicant aquest protocol, reduírem en aproximadament un quart l'esforç necessari per a arribar a certa qualitat de traducció. Finalment, ataquem el complex problema de la descripció d'objectes multimèdia. Aquest problema consisteix en descriure, en llenguatge natural, un objecte visual, una imatge o un vídeo. Comencem amb la tasca de descripció de vídeos d'un domini general. A continuació, ens movem a un cas més específic: la descripció d''esdeveniments a partir d'imatges egocèntriques, capturades al llarg d'un dia. Busquem extraure relacions entre ells per a generar descripcions més informades, desenvolupant un sistema capaç d'analitzar un major context. El model amb context estés genera descripcions de major qualitat que el model bàsic. Finalment, apliquem la predicció interactiva a aquestes tasques multimèdia, di
[EN] The sequence-to-sequence problem consists in transforming an input sequence into an output sequence. A variety of problems can be posed in these terms, including machine translation, speech recognition or multimedia captioning. In the last years, the application of deep neural networks has revolutionized these fields, achieving impressive advances. However and despite the improvements, the output of the automatic systems is still far to be perfect. For achieving high-quality predictions, fully-automatic systems require to be supervised by a human agent, who corrects the errors. This is a common procedure in the translation industry. This thesis is mainly framed into the machine translation problem, tackled using fully neural systems. Our main objective is to develop more efficient neural machine translation systems, that allow for a more productive usage and deployment of the technology. To this end, we base our contributions on two main cornerstones: how to better use of the system and how to better leverage the data generated along its usage. First, we apply the so-called interactive-predictive framework to neural machine translation. This embeds the human agent and the system into a cooperative correction process, that seeks to reduce the human effort spent for obtaining high-quality translations. We develop different interactive protocols for the neural machine translation technology, namely, a prefix-based and a segment-based protocols. They are implemented by modifying the search space of the model. Moreover, we introduce mechanisms for achieving a fine-grained interaction while maintaining the decoding speed of the system. We carried out a wide experimentation that shows the potential of our contributions. The previous state of the art is overcame by a large margin and the current systems are able to react better to the human interactions. Next, we study how to improve a neural system using the data generated as a byproduct of this correction process. To this end, we rely on two main learning paradigms: online and active learning. Under the first one, the system is updated on the fly, as soon as a sentence is corrected. Hence, the system is continuously learning from the corrections, avoiding previous errors and specializing towards a given user or domain. A large experimentation stressed the adaptive systems under different conditions and domains, demonstrating the capabilities of adaptive systems. Moreover, we also carried out a human evaluation of the system, involving professional users. They were very pleased with the adaptive system, and worked more efficiently using it. The second paradigm, active learning, is devised for the translation of huge amounts of data, that are infeasible to being completely supervised. In this scenario, the system selects samples that are worth to be supervised, and leaves the rest automatically translated. Applying this framework, we obtained reductions of approximately a quarter of the effort required for reaching a desired translation quality. The neural approach also obtained large improvements compared with previous translation technologies. Finally, we address another challenging problem: visual captioning. It consists in generating a description in natural language from a visual object, namely an image or a video. We follow the sequence-to-sequence framework, under a a multimodal perspective. We start by tackling the task of generating captions of videos from a general domain. Next, we move on to a more specific case: describing events from egocentric images, acquired along the day. Since these events are consecutive, we aim to extract inter-eventual relationships, for generating more informed captions. The context-aware model improved the generation quality with respect to a regular one. As final point, we apply the intractive-predictive protocol to these multimodal captioning systems, reducing the effort required for correcting the outputs.
Section 5.4 describes an user evaluation of an adaptive translation system. This was done in collaboration with Miguel Domingo and the company Pangeanic, with funding from the Spanish Center for Technological and Industrial Development (Centro para el Desarrollo Tecnológico Industrial). [...] Most of Chapter 6 is the result of a collaboration with Marc Bolaños, supervised by Prof. Petia Radeva, from Universitat de Barcelona/CVC. This collaboration was supported by the R-MIPRCV network, under grant TIN2014-54728-REDC.
Peris Abril, Á. (2019). Interactivity, Adaptation and Multimodality in Neural Sequence-to-sequence Learning [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/134058
TESIS
Charles, Eugene Yougarajah Andrew. "Supervised and unsupervised weight and delay adaptation learning in temporal coding spiking neural networks". Thesis, Cardiff University, 2006. http://orca.cf.ac.uk/56168/.
Texto completoBanda, Peter. "Novel Methods for Learning and Adaptation in Chemical Reaction Networks". PDXScholar, 2015. https://pdxscholar.library.pdx.edu/open_access_etds/2329.
Texto completoMoura, Geraldo de Araújo. "Sistemas de controle fuzzy neural e neural adaptativo destinados ao controle de pressão em rede de distribuição de água". Universidade Federal da Paraíba, 2016. http://tede.biblioteca.ufpb.br:8080/handle/tede/8971.
Texto completoMade available in DSpace on 2017-05-30T13:07:14Z (GMT). No. of bitstreams: 1 - Geraldo Moura -.pdf: 5891648 bytes, checksum: 9ca720ba25a16879f0da2a9a837d1f4b (MD5) Previous issue date: 2016-11-21
This work deals with pressure control in water distribution networks to promote the optimization of hydraulic loads in order to minimize water losses in the pipes and energy in the corresponding pumping system. Therefore, a neural fuzzy control system (NFCS) beyond the adaptive neural control system (ANCS) were developed. These control systems have been tested and evaluated on experimental bench. The neural fuzzy control system (NFCS) involves techniques of artificial neural network (ANN) and fuzzy logic. The adaptive neural control system (ANCS) used a ANN Perceptron type multilayer by backpropagation technique and gradient descent with Levenberg-Marquardt optimizer. The pressure control will be through the frequency inverter with frequency adjustments in real time, which will act on pump motor assembly installed in the trial bench hydraulic network. Control systems NFCS and ANCS, in this work, were confronted in order to promote a comparative analysis between controllers. The results showed that the ANCS reached a performance index greater than NFCS almost entirely. Finally it was added a logic filter to supervisory control and data acquisition system (SCADA) to make the ANCS able to alternately control the minimum pressure points from the distribution network of experimental bench. Both control systems, ANCS and NFCS were developed in programming environment LabVIEW®
Este trabalho tem como objetivo o controle de pressão em redes de distribuição de água, a fim promover a otimização das cargas hidráulicas, buscando minimizar as perdas de água nas tubulações e de energia no correspondente sistema de bombeamento. Para tanto foram elaborados um sistema de controle fuzzy neural (SCFN) e um sistema de controle neural adaptativo (SCNA). Esses sistemas de controle foram testados e avaliados em uma bancada experimental. O sistema de controle fuzzy neural (SCFN) envolve técnicas de rede neural artificial (RNA) e lógica fuzzy. O sistema de controle neural adaptativo (SCNA) utilizou uma RNA do tipo Perceptron de múltiplas camadas, através da técnica de retropropagação (backpropagation) e gradiente descendente com otimizador de Levenberg-Marquardt. O controle de pressão é realizado através do conversor de frequência, com ajustes da frequência, em tempo real (on-line), que atuará sobre conjunto motor bomba (CMB) instalado na rede hidráulica da bancada experimental. Os sistemas de controle SCFN e o SCNA, apresentados neste trabalho, foram confrontados a fim de promover uma análise comparativa entre os controladores. Os resultados demonstraram que o SCNA apresentou especificações superiores ao SCFN em quase sua totalidade. Finalmente foi acrescentado um filtro lógico ao SCADA (supervisory control system and data acquisition) para tornar o SCNA capaz de controlar alternadamente a pressão mínima dentre pontos da rede de distribuição da bancada experimental. Ambos os sistemas de controle, SCFN e SCNA foram desenvolvidos em ambiente de programação LabVIEW®.
Davoian, Kristina [Verfasser] y Wolfram-M. [Akademischer Betreuer] Lippe. "Advancing evolution of artifcial neural networks through behavioral adaptation / Kristina Davoian. Betreuer: Wolfram-M. Lippe". Münster : Universitäts- und Landesbibliothek der Westfälischen Wilhelms-Universität, 2012. http://d-nb.info/102701903X/34.
Texto completoDavoian, Kristina Verfasser] y Wolfram-Manfred [Akademischer Betreuer] [Lippe. "Advancing evolution of artifcial neural networks through behavioral adaptation / Kristina Davoian. Betreuer: Wolfram-M. Lippe". Münster : Universitäts- und Landesbibliothek der Westfälischen Wilhelms-Universität, 2012. http://nbn-resolving.de/urn:nbn:de:hbz:6-71459415133.
Texto completoGonçalves, João Bosco. "Desenvolvimento de um sistema de controle adaptativo e integrado para locomoção de um robo bipede com tronco". [s.n.], 2004. http://repositorio.unicamp.br/jspui/handle/REPOSIP/263888.
Texto completoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecanica
Made available in DSpace on 2018-08-04T03:12:52Z (GMT). No. of bitstreams: 1 Goncalves_JoaoBosco_D.pdf: 9689870 bytes, checksum: db2fb279a1080765ab5bddf9068a356d (MD5) Previous issue date: 2004
Resumo: Este trabalho concebeu um robô bípede composto por uma sucessão de elos rígidos interconectados por 12 articulações rotativas, permitindo movimentos tridimensionais. O robô bípede é constituído por dois subsistemas: tronco e membros inferiores. A modelagem matemática foi realizada em separado para cada um dos subsistemas, que são integrados pelas forças reativas de vínculo. Nossa proposta permite ao robô bípede executar a andadura dinâmica utilizando o tronco para fornecer o balanço dinâmico (estabilidade postural). De forma inédita, foi desenvolvido um gerador automático de trajetória para o tronco que processa as informações de posições e acelerações impostas aos membros inferiores, dotando o robô bípede de reflexos. Foi desenvolvido um gerador de marcha que utiliza a capacidade do robô bípede de executar movimentos tridimensionais, implicando andadura dinamicamente estável sem a efetiva utilização do tronco. O gerador automático de trajetória para o tronco entra em ação se a marcha gerada não mantiver o balanço dinâmico, restabelecendo uma marcha estável. Foi projetado um sistema de controle adaptativo por modelo de referência que utiliza redes neurais artificiais. A avaliação de estabilidade é feita segundo o critério de Lyapunov. O sistema de controle e o gerador automático de trajetórias para o tronco são integrados, compondo os mecanismos adaptativos desenvolvidos para solucionar o modo de andar dinâmico
Abstract: The main objective of this work is to project a biped robot machine with a trunk. The mathematical model was realized by considering two sub-systems: the legs and the trunk. The trajectories of the trunk are planned to compensate torques inherent to the dynamic gait, permitting to preserve the dynamic balance of the biped robot. An automatic generator of trajectory for the trunk was developed that processes the infonnation of positions and accelerations imposed to the legs. A gait generator was developed that uses the capacity of the biped robot to execute three-dimensional movements, causing a steady dynamic gait without the effective use of the trunk. The automatic generator of trajectory for the trunk actuates, if the generated do not keep the dynamic balance, reestablishing he steady dynamic gait. A neural network reference model for the adaptive control was projected, which utilizes an RBF neural network and a stability evaluation is based on the criterion of Lyapunov. The system of control and the automatic generator of trajectories for the trunk are integrated, composing the adaptive mechanisms developed to solve the way of dynamic walking
Doutorado
Mecanica dos Sólidos e Projeto Mecanico
Doutor em Engenharia Mecânica
Kulkarni, Anirudh. "Dynamics of neuronal networks". Thesis, Paris 6, 2017. http://www.theses.fr/2017PA066377/document.
Texto completoIn this thesis, we investigate the vast field of neuroscience through theoretical, numerical and experimental tools. We study how rate models can be used to capture various phenomena observed in the brain. We study the dynamical regimes of coupled networks of excitatory (E) and inhibitory neurons (I) using a rate model description and compare with numerical simulations of networks of neurons described by the EIF model. We focus on the regime where the EI network exhibits oscillations and then couple two of these oscillating networks to study the resulting dynamics. The description of the different regimes for the case of two populations is helpful to understand the synchronization of a chain of E-I modules and propagation of waves observed in the brain. We also look at rate models of sensory adaptation. We propose one such model to describe the illusion of motion after effect in the zebrafish larva. We compare this rate model with newly obtained behavioural and neuronal data in the zebrafish larva
Meftah, Sara. "Neural Transfer Learning for Domain Adaptation in Natural Language Processing". Thesis, université Paris-Saclay, 2021. http://www.theses.fr/2021UPASG021.
Texto completoRecent approaches based on end-to-end deep neural networks have revolutionised Natural Language Processing (NLP), achieving remarkable results in several tasks and languages. Nevertheless, these approaches are limited with their "gluttony" in terms of annotated data, since they rely on a supervised training paradigm, i.e. training from scratch on large amounts of annotated data. Therefore, there is a wide gap between NLP technologies capabilities for high-resource languages compared to the long tail of low-resourced languages. Moreover, NLP researchers have focused much of their effort on training NLP models on the news domain, due to the availability of training data. However, many research works have highlighted that models trained on news fail to work efficiently on out-of-domain data, due to their lack of robustness against domain shifts. This thesis presents a study of transfer learning approaches, through which we propose different methods to take benefit from the pre-learned knowledge on the high-resourced domain to enhance the performance of neural NLP models in low-resourced settings. Precisely, we apply our approaches to transfer from the news domain to the social media domain. Indeed, despite the importance of its valuable content for a variety of applications (e.g. public security, health monitoring, or trends highlight), this domain is still poor in terms of annotated data. We present different contributions. First, we propose two methods to transfer the knowledge encoded in the neural representations of a source model pretrained on large labelled datasets from the source domain to the target model, further adapted by a fine-tuning on few annotated examples from the target domain. The first transfers contextualised supervisedly pretrained representations, while the second method transfers pretrained weights, used to initialise the target model's parameters. Second, we perform a series of analysis to spot the limits of the above-mentioned proposed methods. We find that even if the proposed transfer learning approach enhances the performance on social media domain, a hidden negative transfer may mitigate the final gain brought by transfer learning. In addition, an interpretive analysis of the pretrained model, show that pretrained neurons may be biased by what they have learned from the source domain, thus struggle with learning uncommon target-specific patterns. Third, stemming from our analysis, we propose a new adaptation scheme which augments the target model with normalised, weighted and randomly initialised neurons that beget a better adaptation while maintaining the valuable source knowledge. Finally, we propose a model, that in addition to the pre-learned knowledge from the high-resource source-domain, takes advantage of various supervised NLP tasks
Langlois, Thibault. "Algorithmes d'apprentissage par renforcement pour la commande adaptative : Texte imprimé". Compiègne, 1992. http://www.theses.fr/1992COMPD530.
Texto completoRibeiro, Pleycienne Trajano. "Desenvolvimento, implementação e avaliação de desempenho de um controlador adaptativo do tipo self-tuning regulator aplicado a um processo FCC". [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/266952.
Texto completoTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Química
Made available in DSpace on 2018-08-17T00:14:12Z (GMT). No. of bitstreams: 1 Ribeiro_PleycienneTrajano_D.pdf: 5889372 bytes, checksum: fb40a08b4781dc281483bc320321f3ff (MD5) Previous issue date: 2010
Resumo: Este trabalho teve como principal objetivo o desenvolvimento e implementação de um controlador adaptativo do tipo regulador auto-ajustável (STR - Self Tuning Regulator), com a subsequente comparação de seu desempenho com um controlador PID (proporcionalintegrativo-derivativo) e dois controladores preditivos: um preditivo baseado em redes neurais artificiais e um controlador DMC (Dynamic Matrix Control). Esses esquemas de controle foram todos implementados na ferramenta de simulação desenvolvida, o FCCGUI (Fluid Catalytic Cracking Graphical User Interface). Como modelo para estimativa dos parâmetros do controlador adaptativo foi treinada e validada uma rede neural. Esse modelo caixa-preta forneceu uma abordagem eficiente para identificação e controle não-linear do processo de craqueamento catalítico. Para implementação do controlador adaptativo foram estruturadas três novas malhas de controle PID a partir de estudos estatísticos desenvolvidos para a análise dos efeitos das variáveis de processo e suas interações. Dentre essas novas malhas de controle, optou-se pela implementação do controle adaptativo no par manipulada-controlada CTCV-SEVER (abertura de catalisador regenerado - severidade da reação). Após aperfeiçoamentos e reestruturações no simulador FCCGUI, foram realizadas várias simulações para avaliação gráfica e numérica do desempenho do controlador através do critério de desempenho dinâmico ITAE (Integral of Time and Absolute Error). O controlador adaptativo apresentou bons resultados, tanto para testes servo quanto para regulatórios em comparação com a estratégia PID sem adaptação, bem como para as demais estratégias disponíveis no simulador, MPC-RNA (Model Predictive Control baseado em uma Rede Neural Artificial) e DMC. A capacidade de ajuste dos parâmetros do controlador torna-o uma estratégia promissora para sistemas que sofrem com alterações contínuas em suas variáveis de processo ou mudanças de setpoint
Abstract: This work had as main objective the development and implementation of an selftuning regulator (STR) adaptive controller, with subsequent comparison of its performance with a PID (proportional-integral-derivative) controller and two predictive controllers, namely a predictive based on artificial neural networks (MPC-ANN) and a dynamic matrix controller (DMC). These control schemes were all implemented in the developed simulation tool, the FCCGUI - Fluid Catalytic Cracking Graphical User Interface. An artificial neural network, used as a model to estimate controller parameters, was trained and validated. This black box model provided an efficient approach for identification and nonlinear control of the catalytic cracking process. To implement the adaptive controller, three new PID control loops were structured based on statistical studies designed to analyze the effects of process variables and their interactions. The implementation of adaptive control was chosen to be in the manipulated-controlled pair CTCV-SEVER (regenerated catalyst valve opening - reaction severity). After restructuring and improvements in the simulator FCCGUI, several simulations were performed for graphical and numerical evaluation of controller performance through ITAE (Integral of Time and Absolute Error) dynamic performance criterion. The adaptive controller presented good results for both tests: servo and regulatory, in comparison with PID strategy without adaptation and other strategies available to the simulator, MPC-ANN and DMC. The ability to adjust the parameters of the controller makes it a promising strategy for systems that suffer from continuous changes in their process variables or setpoints
Doutorado
Desenvolvimento de Processos Químicos
Doutor em Engenharia Química
John-Baptiste, Peter Jr. "Advancing Fully Adaptive Radar Concepts for Real-Time Parameter Adaptation and Decision Making". The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595501564082873.
Texto completoSousa, Tiago Fernando Barbosa de. "Equaliza??o neural aplicada a sistemas com modula??o bidimensional em fibra ?ptica". Universidade Federal do Rio Grande do Norte, 2014. http://repositorio.ufrn.br:8080/jspui/handle/123456789/15498.
Texto completoCoordena??o de Aperfei?oamento de Pessoal de N?vel Superior
Nowadays, optic fiber is one of the most used communication methods, mainly due to the fact that the data transmission rates of those systems exceed all of the other means of digital communication. Despite the great advantage, there are problems that prevent full utilization of the optical channel: by increasing the transmission speed and the distances involved, the data is subjected to non-linear inter symbolic interference caused by the dispersion phenomena in the fiber. Adaptive equalizers can be used to solve this problem, they compensate non-ideal responses of the channel in order to restore the signal that was transmitted. This work proposes an equalizer based on artificial neural networks and evaluates its performance in optical communication systems. The proposal is validated through a simulated optic channel and the comparison with other adaptive equalization techniques
A fibra ?ptica ? um dos meios de comunica??o mais utilizados atualmente, principalmente devido ao fato da taxa de transmiss?o de dados desses sistemas excederem as de todos os outros meios de comunica??o digital. Apesar desta grande vantagem, existem problemas que impedem o total aproveitamento do canal ?ptico: com o aumento da velocidade de transmiss?o e das dist?ncias envolvidas, os dados ficam sujeitos a interfer?ncia intersimb?lica n?o linear, causada pelos fen?menos de dispers?o na fibra ?ptica. Para solucionar esse problema podem ser utilizados equalizadores adaptativos, que compensam respostas n?o ideais do canal, com o intuito de restaurar o sinal que foi transmitido. Neste trabalho apresentamos uma proposta de equalizador baseado em redes neurais artificiais e avaliamos seu desempenho em sistemas de comunica??o ?ptica. A proposta ? validada em um canal ?ptico simulado e comparada a outras t?cnicas de equaliza??o adaptativa
Matos, Lucas Guilhem de. "Control and identification of non-linear systems using neural networks and reinforcement learning". reponame:Repositório Institucional da UnB, 2018. http://repositorio.unb.br/handle/10482/32804.
Texto completoSubmitted by Fabiana Santos (fabianacamargo@bce.unb.br) on 2018-09-27T20:19:43Z No. of bitstreams: 1 2018_LucasGuilhemdeMatos_RESUMO.pdf: 59314 bytes, checksum: fcca0edce88c4bbe8975f96cfb38ac6f (MD5)
Rejected by Fabiana Santos (fabianacamargo@bce.unb.br), reason: O arquivo PDF está errado. on 2018-10-08T21:05:29Z (GMT)
Submitted by Fabiana Santos (fabianacamargo@bce.unb.br) on 2018-10-08T21:06:22Z No. of bitstreams: 1 2018_LucasGuilhemdeMatos.pdf: 22624129 bytes, checksum: 8246b13bfdcea5ae4862864196f406be (MD5)
Approved for entry into archive by Fabiana Santos (fabianacamargo@bce.unb.br) on 2018-10-09T20:24:27Z (GMT) No. of bitstreams: 1 2018_LucasGuilhemdeMatos.pdf: 22624129 bytes, checksum: 8246b13bfdcea5ae4862864196f406be (MD5)
Made available in DSpace on 2018-10-09T20:24:27Z (GMT). No. of bitstreams: 1 2018_LucasGuilhemdeMatos.pdf: 22624129 bytes, checksum: 8246b13bfdcea5ae4862864196f406be (MD5) Previous issue date: 2018-08-24
Fundação de Apoio a Pesquisa do Distrito Federal (FAP-DF).
Este trabalho propõe um contolador adaptativo utilizando redes neuras e aprendizado por reforço para lidar com não-linearidades e variância no tempo. Para a realização de testes, um sistema de nível de líquidos de quarta ordem foi escolhido por apresentar uma gama de constantes de tempo e por possibilitar a mudança de parâmetros. O sistema foi identificado com redes neurais para prever estados futuros com o objetivo de compensar o atraso e melhorar a performance do controlador. Diversos testes foram realizados com diversas redes neurais para decidir qual rede neural seria utilizada para cada tarefa pertinente ao controlador. Os parâmetros do controlador foram ajustados e testados para que o controlador pudesse alcançar parâmetros arbitrários de performance. O controlador foi testado e comparado com o PI tradicional para validação e mostrou caracteristicas adaptativas e melhoria de performance ao longo do tempo, além disso, o controlador desenvolvido não necessita de informação prévia do sistema.
This work presents a proposal of an adaptive controller using reinforcement learning and neural networks in order to deal with non-linearities and time-variance. To test the controller a fourth-order fluid level system was chosen because of its great range of time constants and the possibility of varying the system parameters. System identification was performed to predict future states of the system, bypass delay and enhance the controller’s performance. Several tests with different neural networks were made in order to decide which network would be assigned to which task. Various parameters of the controller were tested and tuned to achieve a controller that satisfied arbitrary specifications. The controller was tested against a conventional PI controller used as reference and has shown adaptive features and improvement during execution. Also, the proposed controller needs no previous information on the system in order to be designed.
Santos, Junior Carlos Roberto dos [UNESP]. "Teoria da ressonância adaptativa através da linguagem Java para detecção e classificação de e-mails indesejados". Universidade Estadual Paulista (UNESP), 2013. http://hdl.handle.net/11449/87167.
Texto completoO problema de mensagens não solicitadas pelos usuários em meios de comunicação eletrônica, apesar de ter surgido antes mesmo da popularização da Internet, ainda é um assunto preocupante. Desperdício de largura de banda, perda de tempo, de produtividade e de dados, ou atraso na leitura de e-mails legítimos, são alguns dos problemas que as mensagens não solicitadas, ou Spams, podem causar. Diversas técnicas de filtragem automática de e-mails são apresentadas na literatura, porém muitas destas não oferecem a possibilidade de adaptação, já que o problema em sistemas reais tem como um de seus principais aspectos ser dinâmico, ou seja, mudar constantemente de características com intuito de evadir as técnicas de filtragem. Neste trabalho é desenvolvido um filtro anti-spam utilizando uma técnica de préprocessamento disponível na literatura, no qual os e-mails são submetidos à extração e seleção de características; e uma Rede Neural Artificial baseada na Teoria da Ressonância Adaptativa, para detecção e classificação de Spams. Tais redes neurais possuem grande capacidade de generalização e adaptabilidade, características importantes para um bom desempenho de filtros anti-spam. O modelo proposto neste trabalho é testado a fim de se validar a eficiência do filtro.
The problem in receiving non desired messages in electronic communication systems is a very hard task; even it has begun before the popularization of Internet. The problems that these kinds of messages can cause are among others: waste of time, waste of band width, productivity and data or delay in reading the real e-mails. Several e-mail automatic filtering techniques are presented in the literature, however many of them without capacity of adaptation, while the problem in real systems must be dynamical, i.e. avoid filtering techniques. This work develops a SPAM filtering using a pre processing technique available in the literature, where the e-mails are submitted to extract and select the characteristics; and a neural network based on the resonance adaptive theory to detect and classify the SPAMS. These neural networks have capacity in generalization and adaptation, important characteristics of good performance of SPAM filters. The proposed model is submitted to several tests to validate the efficiency of the filter.
Lopes, Mara Lúcia Martins [UNESP]. "Desenvolvimento de redes neurais para previsão de cargas elétricas de sistemas de energia elétrica". Universidade Estadual Paulista (UNESP), 2005. http://hdl.handle.net/11449/100374.
Texto completoFundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Nos dias atuais, principalmente pelo fato de alguns sistemas serem desregulamentados, o estudo dos problemas de análise, planejamento e operação de sistemas de energia elétrica é de extrema importância para o funcionamento do sistema. Para isso é necessário que se obtenha, com antecedência, o comportamento da carga elétrica com o propósito de garantir o fornecimento de energia aos consumidores de forma econômica, segura e contínua. Este trabalho propõe o desenvolvimento de redes neurais artificiais utilizadas para resolver o problema de previsão de cargas elétricas. Para tanto, inicialmente, propôs-se a introdução de melhorias na rede neural feedforward com treinamento realizado utilizando o algoritmo retropropagação. Neste caso, foi desenvolvida/implementada a adaptação dos parâmetros de inclinação e translação da função sigmóide (função de ativação da rede neural). A inclusão desta nova estrutura de redes neurais produziu melhores resultados, se comparado à rede neural retropropagação convencional. Essas arquiteturas proporcionam bons resultados, porém, são estruturas de redes neurais que possuem o problema de convergência. O problema de previsão de cargas elétricas a curto-prazo necessita de uma rede neural que forneça uma saída de forma rápida e eficaz. No intuito de solucionar os problemas encontrados com o algoritmo retropropagação foi desenvolvida/implementada uma rede neural baseada na arquitetura ART (Adaptive Rossonance Theory), denominada rede neural ART&ARTMAP nebulosa, aplicada ao problema de previsão de carga elétrica. Trata-se, por conseguinte, da principal contribuição desta tese. As redes neurais, baseadas na arquitetura ART, possuem duas características fundamentais que são de extrema importância para o desempenho da rede (estabilidade e plasticidade), que permite a implementação do treinamento de modo contínuo...
Nowadays due to the deregulamentation it is very important to study the problems of analyzing, planning and operation of electric power systems. For a reliable operation it is necessary to know previously the behavior of the load to guarantee the energy providing to the users with security and continuity and in an economic way. This work proposes to develop artificial neural networks to solve the problem of electric load forecasting. First, it is introduced some improvements on the feedforward neural network, with the training effectuated with the backpropagation algorithm. The improvement was the adaptation of the inclination and translation parameters of the sigmoid function (activation function of the neural network). The inclusion of this new structure provides better results if compared to the conventional backpropagation algorithm. These architectures provide good results, although they are structures that have some convergence problems. The short term electric load forecasting problem needs a neural network that provide a fast and efficient output. To solve this problem a neural network based on the ART (Adaptive Ressonance Theory), called_ fuzzy ART&ARTMAP applied to the load-forecasting problem, was developed and implemented._This is one of the contributions of this work. Neural networks based on the ART architecture have two important characteristics for the network performance, which are stability and plasticity, allowing the continuous training. The fuzzy ART&ARTMAP neural network reduces the imprecision of the results by a mechanism that separates the binary and analogical data and processing them separately. This represents a quality and an improvement on the results (reduction of the processing time and better precision), if compared to the neural network with backpropagation training (often considered as a benchmark in precision by the specialized...(Complete abastract click electronic access below)
Machado, Madson Cruz. "Sintonia RNA-RBF para o Projeto Online de Sistemas de Controle Adaptativo". Universidade Federal do Maranhão, 2017. http://tedebc.ufma.br:8080/jspui/handle/tede/1744.
Texto completoMade available in DSpace on 2017-07-18T19:31:22Z (GMT). No. of bitstreams: 1 MadsonMachado.pdf: 3046442 bytes, checksum: 71cc6800f83fdbf38b97607067653f63 (MD5) Previous issue date: 2017-05-26
The need to increase industrial productivity coupled with quality and low cost requirements has generated a demand for the development of high performance controllers. Motivated by this demand, we presented in this work models, algorithms and a methodology for the online project of high-performance control systems. The models have characteristics of adaptability through adaptive control system architectures. The models developed were based on artificial neural networks of radial basis function type, for the online project of model reference adaptive control systems associated with the of sliding modes control. The algorithms and the embedded system developed for the online project were evaluated for tracking mobile targets, in this case, the solar radiation. The control system has the objective of keeping the surface of the photovoltaic module perpendicular to the solar radiation, in this way the energy generated by the module will be as high as possible. The process consists of a photovoltaic panel coupled in a structure that rotates around an axis parallel to the earth’s surface, positioning the panel in order to capture the highest solar radiation as function of its displacement throughout the day.
A necessidade de aumentar a produtividade industrial, associada com os requisitos de qualidade e baixo custo, gerou uma demanda para o desenvolvimento de controladores de alto desempenho. Motivado por esta demanda, apresentou-se neste trabalho modelos, algoritmos e uma metodologia para o projeto online de sistemas de controle de alto desempenho. Os modelos apresentam características de adaptabilidade por meio de arquiteturas de sistemas de controle adaptativo. O desenvolvimento de modelos, baseia-se em redes neurais artificiais (RNA), do tipo função de base radial (RBF, radial basis function), para o projeto online de sistemas de controle adaptativo do tipo modelo de referência associado com o controle de modos deslizantes (SMC, sliding mode control). Os algoritmos e o sistema embarcado desenvolvidos para o projeto online são avaliados para o rastreamento de alvos móveis, neste caso, o rastreamento da radiação solar. O sistema de controle tem o objetivo de manter a superfície do módulo fotovoltaico perpendicular à radiação solar, pois dessa forma a energia gerada pelo módulo será a maior possível. O processo consiste de um painel fotovoltaico acoplado em uma estrutura que gira em torno de um eixo paralelo à superfície da terra, posicionando o painel de forma a capturar a maior radiação solar em função de seu deslocamento ao longo do dia.
Silva, Magno Teófilo Madeira da. "Equalização não-linear de canais de comunicação". Universidade de São Paulo, 2001. http://www.teses.usp.br/teses/disponiveis/3/3142/tde-03072001-162729/.
Texto completoEqualization of communication channels using neural networks is investigated by considering three kinds of networks: MLP (Multilayer Perceptron), RBF (Radial Basis Function) and RNN (Recurrent Neural Network). The performance of the nonlinear equalizers based on these networks are compared with the linear transversal equalizer and the optimal equalizers given by the bayesian and maximum likelihood criteria. Binary and quaternary alphabets are used and transmitted over finite pulse response channel models. Decision feedback is considered whenever it is worthwhile. The training of these equalizers is considered in the supervised form and a comparison of some training algorithms has been performed. In this scope, a new algorithm based on parameter acceleration is introduced for the training of MLP networks. Moreover, a hybrid equalizer composed of a linear transversal equalizer and a RNN network is proposed. It is a simple and flexible nonlinear structure making use of decision feedback. imulation results show that it may be advantageously used to equalize linear and nonlinear channels.
Pazelli, Tatiana de Figueiredo Pereira Alves Taveira. "Controladores adaptativos não-lineares com critério H \'INFINITO\' aplicados a robôs espaciais". Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/18/18133/tde-26022007-152250/.
Texto completoIn the present work, the dynamics of a free-floating space manipulator is described through the dynamically equivalent manipulator approach in order to obtain experimental results in a planar fixed base manipulator. Control in joint and Cartesian spaces are considered. The first acts directly on joints positioning; the second control scheme acts on positioning the end-effector in some inertially fixed position. In both cases, the problem of tracking control with a guaranteed H-infinity performance for free-floating manipulator systems with plant uncertainties and external disturbances is proposed and solved. Considering control methods for underactuated systems, three adaptive techniques were developed from a nonlinear H-infinity controller based on game theory. The first approach was proposed considering a well defined structure for the plant, however it was computed based on uncertain parameters. An adaptive law was applied to estimate these parameters using linear parametrization. Artificial neural networks were applied in the two other approaches. The first one uses a neural network to learn the dynamic behavior from the robotic system, which is considered totally unknown. No kinematics or dynamics data from the spacecraft are necessary in this case. The second approach considers the nominal model structure well defined and the neural network is applied to estimate the behavior of the parametric uncertainties and of the spacecraft non-modeled dynamics. The H-infinity criterion was applied to attenuate the effect of estimation errors in the three techniques. Experimental results were obtained with an underactuated fixed-base planar manipulator (UArmII) and presented better performance in tracking and energy consumption for the neural based approaches.
McClintick, Kyle W. "Training Data Generation Framework For Machine-Learning Based Classifiers". Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/1276.
Texto completoCaye, Daudt Rodrigo. "Convolutional neural networks for change analysis in earth observation images with noisy labels and domain shifts". Electronic Thesis or Diss., Institut polytechnique de Paris, 2020. http://www.theses.fr/2020IPPAT033.
Texto completoThe analysis of satellite and aerial Earth observation images allows us to obtain precise information over large areas. A multitemporal analysis of such images is necessary to understand the evolution of such areas. In this thesis, convolutional neural networks are used to detect and understand changes using remote sensing images from various sources in supervised and weakly supervised settings. Siamese architectures are used to compare coregistered image pairs and to identify changed pixels. The proposed method is then extended into a multitask network architecture that is used to detect changes and perform land cover mapping simultaneously, which permits a semantic understanding of the detected changes. Then, classification filtering and a novel guided anisotropic diffusion algorithm are used to reduce the effect of biased label noise, which is a concern for automatically generated large-scale datasets. Weakly supervised learning is also achieved to perform pixel-level change detection using only image-level supervision through the usage of class activation maps and a novel spatial attention layer. Finally, a domain adaptation method based on adversarial training is proposed, which succeeds in projecting images from different domains into a common latent space where a given task can be performed. This method is tested not only for domain adaptation for change detection, but also for image classification and semantic segmentation, which proves its versatility
Santos, Junior Carlos Roberto dos. "Teoria da ressonância adaptativa através da linguagem Java para detecção e classificação de e-mails indesejados /". Ilha Solteira, 2013. http://hdl.handle.net/11449/87167.
Texto completoCoorientador: Maria do Carmo Gomes da Silveira
Banca: Mara Lúcia Martins Lopes
Banca: Benedito Isaias de Lima Lopes
Resumo: O problema de mensagens não solicitadas pelos usuários em meios de comunicação eletrônica, apesar de ter surgido antes mesmo da popularização da Internet, ainda é um assunto preocupante. Desperdício de largura de banda, perda de tempo, de produtividade e de dados, ou atraso na leitura de e-mails legítimos, são alguns dos problemas que as mensagens não solicitadas, ou Spams, podem causar. Diversas técnicas de filtragem automática de e-mails são apresentadas na literatura, porém muitas destas não oferecem a possibilidade de adaptação, já que o problema em sistemas reais tem como um de seus principais aspectos ser dinâmico, ou seja, mudar constantemente de características com intuito de evadir as técnicas de filtragem. Neste trabalho é desenvolvido um filtro anti-spam utilizando uma técnica de préprocessamento disponível na literatura, no qual os e-mails são submetidos à extração e seleção de características; e uma Rede Neural Artificial baseada na Teoria da Ressonância Adaptativa, para detecção e classificação de Spams. Tais redes neurais possuem grande capacidade de generalização e adaptabilidade, características importantes para um bom desempenho de filtros anti-spam. O modelo proposto neste trabalho é testado a fim de se validar a eficiência do filtro.
Abstract: The problem in receiving non desired messages in electronic communication systems is a very hard task; even it has begun before the popularization of Internet. The problems that these kinds of messages can cause are among others: waste of time, waste of band width, productivity and data or delay in reading the real e-mails. Several e-mail automatic filtering techniques are presented in the literature, however many of them without capacity of adaptation, while the problem in real systems must be dynamical, i.e. avoid filtering techniques. This work develops a SPAM filtering using a pre processing technique available in the literature, where the e-mails are submitted to extract and select the characteristics; and a neural network based on the resonance adaptive theory to detect and classify the SPAMS. These neural networks have capacity in generalization and adaptation, important characteristics of good performance of SPAM filters. The proposed model is submitted to several tests to validate the efficiency of the filter.
Mestre