Tesis sobre el tema "Neural language models"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores tesis para su investigación sobre el tema "Neural language models".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore tesis sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Lei, Tao Ph D. Massachusetts Institute of Technology. "Interpretable neural models for natural language processing". Thesis, Massachusetts Institute of Technology, 2017. http://hdl.handle.net/1721.1/108990.
Texto completoCataloged from PDF version of thesis.
Includes bibliographical references (pages 109-119).
The success of neural network models often comes at a cost of interpretability. This thesis addresses the problem by providing justifications behind the model's structure and predictions. In the first part of this thesis, we present a class of sequence operations for text processing. The proposed component generalizes from convolution operations and gated aggregations. As justifications, we relate this component to string kernels, i.e. functions measuring the similarity between sequences, and demonstrate how it encodes the efficient kernel computing algorithm into its structure. The proposed model achieves state-of-the-art or competitive results compared to alternative architectures (such as LSTMs and CNNs) across several NLP applications. In the second part, we learn rationales behind the model's prediction by extracting input pieces as supporting evidence. Rationales are tailored to be short and coherent, yet sufficient for making the same prediction. Our approach combines two modular components, generator and encoder, which are trained to operate well together. The generator specifies a distribution over text fragments as candidate rationales and these are passed through the encoder for prediction. Rationales are never given during training. Instead, the model is regularized by the desiderata for rationales. We demonstrate the effectiveness of this learning framework in applications such multi-aspect sentiment analysis. Our method achieves a performance over 90% evaluated against manual annotated rationales.
by Tao Lei.
Ph. D.
Kunz, Jenny. "Neural Language Models with Explicit Coreference Decision". Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-371827.
Texto completoLabeau, Matthieu. "Neural language models : Dealing with large vocabularies". Thesis, Université Paris-Saclay (ComUE), 2018. http://www.theses.fr/2018SACLS313/document.
Texto completoThis work investigates practical methods to ease training and improve performances of neural language models with large vocabularies. The main limitation of neural language models is their expensive computational cost: it depends on the size of the vocabulary, with which it grows linearly. Despite several training tricks, the most straightforward way to limit computation time is to limit the vocabulary size, which is not a satisfactory solution for numerous tasks. Most of the existing methods used to train large-vocabulary language models revolve around avoiding the computation of the partition function, ensuring that output scores are normalized into a probability distribution. Here, we focus on sampling-based approaches, including importance sampling and noise contrastive estimation. These methods allow an approximate computation of the partition function. After examining the mechanism of self-normalization in noise-contrastive estimation, we first propose to improve its efficiency with solutions that are adapted to the inner workings of the method and experimentally show that they considerably ease training. Our second contribution is to expand on a generalization of several sampling based objectives as Bregman divergences, in order to experiment with new objectives. We use Beta divergences to derive a set of objectives from which noise contrastive estimation is a particular case. Finally, we aim at improving performances on full vocabulary language models, by augmenting output words representation with subwords. We experiment on a Czech dataset and show that using character-based representations besides word embeddings for output representations gives better results. We also show that reducing the size of the output look-up table improves results even more
Bayer, Ali Orkan. "Semantic Language models with deep neural Networks". Doctoral thesis, Università degli studi di Trento, 2015. https://hdl.handle.net/11572/367784.
Texto completoBayer, Ali Orkan. "Semantic Language models with deep neural Networks". Doctoral thesis, University of Trento, 2015. http://eprints-phd.biblio.unitn.it/1578/1/bayer_thesis.pdf.
Texto completoLi, Zhongliang. "Slim Embedding Layers for Recurrent Neural Language Models". Wright State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=wright1531950458646138.
Texto completoGangireddy, Siva Reddy. "Recurrent neural network language models for automatic speech recognition". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28990.
Texto completoScarcella, Alessandro. "Recurrent neural network language models in the context of under-resourced South African languages". Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29431.
Texto completoLe, Hai Son. "Continuous space models with neural networks in natural language processing". Phd thesis, Université Paris Sud - Paris XI, 2012. http://tel.archives-ouvertes.fr/tel-00776704.
Texto completoMiao, Yishu. "Deep generative models for natural language processing". Thesis, University of Oxford, 2017. http://ora.ox.ac.uk/objects/uuid:e4e1f1f9-e507-4754-a0ab-0246f1e1e258.
Texto completoSun, Qing. "Greedy Inference Algorithms for Structured and Neural Models". Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/81860.
Texto completoPh. D.
Hedström, Simon. "General Purpose Vector Representation for Swedish Documents : An application of Neural Language Models". Thesis, Umeå universitet, Institutionen för fysik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-160109.
Texto completoParthiban, Dwarak Govind. "On the Softmax Bottleneck of Word-Level Recurrent Language Models". Thesis, Université d'Ottawa / University of Ottawa, 2020. http://hdl.handle.net/10393/41412.
Texto completoKamper, Herman. "Unsupervised neural and Bayesian models for zero-resource speech processing". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/25432.
Texto completoKryściński, Wojciech. "Training Neural Models for Abstractive Text Summarization". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-236973.
Texto completoAbstraktiv textsammanfattning syftar på att korta ner långa textdokument till en förkortad, mänskligt läsbar form, samtidigt som den viktigaste informationen i källdokumentet bevaras. Ett vanligt tillvägagångssätt för att träna sammanfattningsmodeller är att använda maximum likelihood-estimering med teacher-forcing-strategin. Trots dess popularitet har denna metod visat sig ge modeller med suboptimal prestanda vid inferens. I det här arbetet undersöks hur användningen av alternativa, uppgiftsspecifika träningssignaler påverkar sammanfattningsmodellens prestanda. Två nya träningssignaler föreslås och utvärderas som en del av detta arbete. Den första, vilket är en ny metrik, mäter överlappningen mellan n-gram i sammanfattningen och den sammanfattade artikeln. Den andra använder en diskrimineringsmodell för att skilja mänskliga skriftliga sammanfattningar från genererade på ordnivå. Empiriska resultat visar att användandet av de nämnda mätvärdena som belöningar för policygradient-träning ger betydande prestationsvinster mätt med ROUGE-score, novelty score och mänsklig utvärdering.
Wen, Tsung-Hsien. "Recurrent neural network language generation for dialogue systems". Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/275648.
Texto completoPasquiou, Alexandre. "Deciphering the neural bases of language comprehension using latent linguistic representations". Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPASG041.
Texto completoIn the last decades, language models (LMs) have reached human level performance on several tasks. They can generate rich representations (features) that capture various linguistic properties such has semantics or syntax. Following these improvements, neuroscientists have increasingly used them to explore the neural bases of language comprehension. Specifically, LM's features computed from a story are used to fit the brain data of humans listening to the same story, allowing the examination of multiple levels of language processing in the brain. If LM's features closely align with a specific brain region, then it suggests that both the model and the region are encoding the same information. LM-brain comparisons can then teach us about language processing in the brain. Using the fMRI brain data of fifty US participants listening to "The Little Prince" story, this thesis 1) investigates the reasons why LMs' features fit brain activity and 2) examines the limitations of such comparisons. The comparison of several pre-trained and custom-trained LMs (GloVe, LSTM, GPT-2 and BERT) revealed that Transformers better fit fMRI brain data than LSTM and GloVe. Yet, none are able to explain all the fMRI signal, suggesting either limitations related to the encoding paradigm or to the LMs. Focusing specifically on Transformers, we found that no brain region is better fitted by specific attentional head or layer. Our results caution that the nature and the amount of training data greatly affects the outcome, indicating that using off-the-shelf models trained on small datasets is not effective in capturing brain activations. We showed that LMs' training influences their ability to fit fMRI brain data, and that perplexity was not a good predictor of brain score. Still, training LMs particularly improves their fitting performance in core semantic regions, irrespective of the architecture and training data. Moreover, we showed a partial convergence between brain's and LM's representations.Specifically, they first converge during model training before diverging from one another. This thesis further investigates the neural bases of syntax, semantics and context-sensitivity by developing a method that can probe specific linguistic dimensions. This method makes use of "information-restricted LMs", that are customized LMs architectures trained on feature spaces containing a specific type of information, in order to fit brain data. First, training LMs on semantic and syntactic features revealed a good fitting performance in a widespread network, albeit with varying relative degrees. The quantification of this relative sensitivity to syntax and semantics showed that brain regions most attuned to syntax tend to be more localized, while semantic processing remain widely distributed over the cortex. One notable finding from this analysis was that the extent of semantic and syntactic sensitive brain regions was similar across hemispheres. However, the left hemisphere had a greater tendency to distinguish between syntactic and semantic processing compared to the right hemisphere. In a last set of experiments we designed "masked-attention generation", a method that controls the attention mechanisms in transformers, in order to generate latent representations that leverage fixed-size context. This approach provides evidence of context-sensitivity across most of the cortex. Moreover, this analysis found that the left and right hemispheres tend to process shorter and longer contextual information respectively
Rossi, Alex. "Self-supervised information retrieval: a novel approach based on Deep Metric Learning and Neural Language Models". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Buscar texto completoBrorson, Erik. "Classifying Hate Speech using Fine-tuned Language Models". Thesis, Uppsala universitet, Statistiska institutionen, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352637.
Texto completoChen, Charles L. "Neural Network Models for Tasks in Open-Domain and Closed-Domain Question Answering". Ohio University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=ohiou1578592581367428.
Texto completoSiniša, Suzić. "Parametarska sinteza ekspresivnog govora". Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2019. https://www.cris.uns.ac.rs/record.jsf?recordId=110631&source=NDLTD&language=en.
Texto completoIn this thesis methods for expressive speech synthesis using parametricapproaches are presented. It is shown that better results are achived withusage of deep neural networks compared to synthesis based on hiddenMarkov models. Three new methods for synthesis of expresive speech usingdeep neural networks are presented: style codes, model re-training andshared hidden layer architecture. It is shown that best results are achived byusing style code method. The new method for style transplantation based onshared hidden layer architecture is also proposed. It is shown that thismethod outperforms referent method from literature.
Fancellu, Federico. "Computational models for multilingual negation scope detection". Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33038.
Texto completoZamora, Martínez Francisco Julián. "Aportaciones al modelado conexionista de lenguaje y su aplicación al reconocimiento de secuencias y traducción automática". Doctoral thesis, Universitat Politècnica de València, 2012. http://hdl.handle.net/10251/18066.
Texto completoZamora Martínez, FJ. (2012). Aportaciones al modelado conexionista de lenguaje y su aplicación al reconocimiento de secuencias y traducción automática [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/18066
Palancia
VENTURA, FRANCESCO. "Explaining black-box deep neural models' predictions, behaviors, and performances through the unsupervised mining of their inner knowledge". Doctoral thesis, Politecnico di Torino, 2021. http://hdl.handle.net/11583/2912972.
Texto completoWenestam, Arvid. "Labelling factual information in legal cases using fine-tuned BERT models". Thesis, Uppsala universitet, Statistiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-447230.
Texto completoCallin, Jimmy. "Word Representations and Machine Learning Models for Implicit Sense Classification in Shallow Discourse Parsing". Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-325876.
Texto completoDas, Manirupa. "Neural Methods Towards Concept Discovery from Text via Knowledge Transfer". The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1572387318988274.
Texto completoAndruccioli, Matteo. "Previsione del Successo di Prodotti di Moda Prima della Commercializzazione: un Nuovo Dataset e Modello di Vision-Language Transformer". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24956/.
Texto completoAzeraf, Elie. "Classification avec des modèles probabilistes génératifs et des réseaux de neurones. Applications au traitement des langues naturelles". Electronic Thesis or Diss., Institut polytechnique de Paris, 2022. https://theses.hal.science/tel-03880848.
Texto completoMany probabilistic models have been neglected for classification tasks with supervised learning for several years, as the Naive Bayes or the Hidden Markov Chain. These models, called generative, are criticized because the induced classifier must learn the observations' law. This problem is too complex when the number of observations' features is too large. It is especially the case with Natural Language Processing tasks, as the recent embedding algorithms convert words in large numerical vectors to achieve better scores.This thesis shows that every generative model can define its induced classifier without using the observations' law. This proposition questions the usual categorization of the probabilistic models and classifiers and allows many new applications. Therefore, Hidden Markov Chain can be efficiently applied to Chunking and Naive Bayes to sentiment analysis.We go further, as this proposition allows to define the classifier induced from a generative model with neural network functions. We "neuralize" the models mentioned above and many of their extensions. Models so obtained allow to achieve relevant scores for many Natural Language Processing tasks while being interpretable, able to require little training data, and easy to serve
Gorana, Mijatović. "Dekompozicija neuralne aktivnosti: model za empirijsku karakterizaciju inter-spajk intervala". Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2018. https://www.cris.uns.ac.rs/record.jsf?recordId=107498&source=NDLTD&language=en.
Texto completoThe advances in extracellular neural recording techniquesresult in big data volumes that necessitate fast,reliable, and automatic identification of statisticallysimilar units. This study proposes a single frameworkyielding a compact set of probabilistic descriptors thatcharacterise the firing patterns of a single unit. Probabilisticfeatures are estimated from an inter-spikeintervaltime series, without assumptions about the firing distribution or the stationarity. The first level of proposedfiring patterns decomposition divides the inter-spikeintervals into bursting, moderate and idle firing modes,yielding a coarse feature set. The second level identifiesthe successive bursting spikes, or the spiking acceleration/deceleration in the moderate firing mode, yieldinga refined feature set. The features are estimated fromsimulated data and from experimental recordings fromthe lateral prefrontal cortex in awake, behaving rhesusmonkeys. An effcient and stable partitioning of neuralunits is provided by the ensemble evidence accumulationclustering. The possibility of selecting the number ofclusters and choosing among coarse and refined featuresets provides an opportunity to explore and comparedifferent data partitions. The estimation of features, ifapplied to a single unit, can serve as a tool for the firinganalysis, observing either overall spiking activity or theperiods of interest in trial-to-trial recordings. If applied tomassively parallel recordings, it additionally serves as aninput to the clustering procedure, with the potential tocompare the functional properties of various brainstructures and to link the types of neural cells to theparticular behavioural states.
Korger, Christina. "Clustering of Distributed Word Representations and its Applicability for Enterprise Search". Master's thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2016. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-208869.
Texto completoRolnic, Sergiu Gabriel. "Anonimizzazione di documenti mediante Named Entity Recognition e Neural Language Model". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Buscar texto completoBIANCHI, FEDERICO. "Corpus-based Comparison of Distributional Models of Language and Knowledge Graphs". Doctoral thesis, Università degli Studi di Milano-Bicocca, 2020. http://hdl.handle.net/10281/263553.
Texto completoOne of the main goals of artificial intelligence is understanding how intelligent agent acts. Language is one of the most important media of communication, and studying theories that can account for the meaning of natural language expressions is an important task. Language is one of the most important media of communication, and studying theories that can account for the meaning of natural language expressions is a crucial task in artificial intelligence. Distributional semantics states that the meaning of natural language expressions can be derived from the context in which the expressions appear. This theory has been implemented by algorithms that generate vector representations of natural language expressions that represent similar natural language expressions with similar vectors. In the last years, several cognitive scientists have shown that these representations are correlated with associative learning and they capture cognitive biases and stereotypes as they are encoded in text corpora. If language is encoding important aspects of cognition and our associative knowledge, and language usage change across the contexts, the comparison of language usage in different contexts may reveal important associative knowledge patterns. Thus, if we want to reveal these patterns, we need ways to compare distributional representations that are generated from different text corpora. For example, using these algorithms on textual documents from different periods will generate different representations: since language evolves during time, finding a way to compare words that have shifted over time is a valuable task for artificial intelligence (e.g., the word "Amazon" has changed its prevalent meaning during the last years). In this thesis, we introduce a corpus-based comparative model that allows us to compare representations of different sources generated under the distributional semantic theory. We propose a model that is both effective and efficient, and we show that it can also deal with entity names and not just words, overcoming some problems that follow from the ambiguity of natural language. Eventually, we combine these methods with logical approaches. We show that we can do logical reasoning on these representations and make comparisons based on logical constructs.
Keisala, Simon. "Using a Character-Based Language Model for Caption Generation". Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163001.
Texto completoGaragnani, Max. "Understanding language and attention : brain-based model and neurophysiological experiments". Thesis, University of Cambridge, 2009. https://www.repository.cam.ac.uk/handle/1810/243852.
Texto completoAl-Kadhimi, Staffan y Paul Löwenström. "Identification of machine-generated reviews : 1D CNN applied on the GPT-2 neural language model". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280335.
Texto completoI och med de senaste framstegen inom maskininlärning kan datorer skapa mer och mer övertygande text, vilket skapar en oro för ökad falsk information på internet. Samtidigt vägs detta upp genom att forskare skapar verktyg för att identifiera datorgenererad text. Forskare har kunnat utnyttja svagheter i neurala språkmodeller och använda dessa mot dem. Till exempel tillhandahåller GLTR användare en visuell representation av texter, som hjälp för att klassificera dessa som människo- skrivna eller maskingenererade. Genom att träna ett faltningsnätverk (convolutional neural network, eller CNN) på utdata från GLTR-analys av maskingenererade och människoskrivna filmrecensioner, tar vi GLTR ett steg längre och använder det för att genomföra klassifikationen automatiskt. Emellertid tycks det ej vara tillräckligt att använda en CNN med GLTR som huvuddatakälla för att klassificera på en nivå som är jämförbar med de bästa existerande metoderna.
Cavallucci, Martina. "Speech Recognition per l'italiano: Sviluppo e Sperimentazione di Soluzioni Neurali con Language Model". Master's thesis, Alma Mater Studiorum - Università di Bologna, 2022.
Buscar texto completoRoos, Magnus. "Speech Comprehension : Theoretical approaches and neural correlates". Thesis, Högskolan i Skövde, Institutionen för biovetenskap, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:his:diva-11240.
Texto completoSouza, Cristiano Roberto de. "Modelos para previsão do risco de crédito". [s.n.], 2010. http://repositorio.unicamp.br/jspui/handle/REPOSIP/259123.
Texto completoDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação
Made available in DSpace on 2018-08-15T23:37:59Z (GMT). No. of bitstreams: 1 Souza_CristianoRobertode_M.pdf: 1062354 bytes, checksum: 8217be7daba7d7fd194700fdacfc5b03 (MD5) Previous issue date: 2010
Resumo: Os modelos computacionais para previsão do risco financeiro têm ganhado grande importância desde 1970. Com a atual crise financeira os governos tem discutido formas de regular o setor financeiro e a mais conhecida e adotada é a de Basiléia I e II, que é fortemente suportada por modelo de previsão de risco de crédito. Assim este tipo de modelo pode ajudar os governos e as instituições financeiras a conhecerem melhor suas carteiras para assim criarem controle sobre os riscos envolvidos. Para se ter uma idéia da importância destes modelos para as instituições financeiras a avaliação de risco dada pelo modelo é utilizada como forma de mostrar ao Banco Central a qualidade da carteira de crédito. Através desta medida de qualidade o Banco Central exige que os acionistas do banco deixem depositados um percentual do dinheiro emprestado como garantia dos empréstimos duvidosos criando assim o Índice de Basiléia. Com o objetivo de estudar as ferramentas que atualmente auxiliam no desenvolvimento dos modelos de risco de crédito iremos abordar: 1. Técnicas tradicionais Estatísticas, 2. Técnicas Não Paramétricas, 3. Técnicas Computação Natural
Abstract: The computer models to forecast financial risk have gained great importance since 1970 [1]. With the current crisis Financial government has discussed ways to regulate the financial sector, and the most widely known and adopted form is Basel I and II, which is strongly supported by the forecasting models of credit risk. This type of model can help governments and financial institutions to better understand their portfolios so they can establish control over the risks involved. To get an idea of the importance of this models for financial institutions, the risk assessment given by the model is used as a way of showing the central bank quality of credit portfolio. This measure of quality the Central Bank requires that the shareholders of the bank no longer paid a percentage of the borrowed money as collateral in problem loans and thus creating the index of Basel. In order to study the tools that actually support the development to models of credit risk we will cover: 1. Statistics techniques, 2. Non-Parametric Techniques, 3. Natural Computation Techniques
Mestrado
Automação
Mestre em Engenharia Elétrica
Gennari, Riccardo. "End-to-end Deep Metric Learning con Vision-Language Model per il Fashion Image Captioning". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2022. http://amslaurea.unibo.it/25772/.
Texto completoLombardini, Alessandro. "Estrazione di Correlazioni Medicali da Social Post non Etichettati con Language Model Neurali e Data Clustering". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Buscar texto completoBojan, Batinić. "Model za predviđanje količine ambalažnog i biorazgradivog otpada primenom neuronskih mreža". Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2015. http://www.cris.uns.ac.rs/record.jsf?recordId=94084&source=NDLTD&language=en.
Texto completoBy using artificial neural networks, models for prediction of the quantity ofpackaging and biodegradable municipal waste in the Republic of Serbia bythe end of 2030, were developed. Models were based on dependencebetween total household consumption and generated quantities of twoobserved waste streams. In addition, based on dependence with the GrossDomestic Product (GDP), a model for the projection of share of differentmunicipal solid waste treatment options in the Republic of Serbia for the sameperiod, was created. Obtained results represent a starting point for assessingthe potential for recycling of packaging waste, and determination ofbiodegradable municipal waste quantities which expected that in the futureperiod will not be disposed at landfills, in accordance with modern principlesof waste management and existing EU requirements in this area.
Galdo, Carlos y Teddy Chavez. "Prototyputveckling för skalbar motor med förståelse för naturligt språk". Thesis, KTH, Hälsoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223350.
Texto completoNatural Language Understanding is a field that is part of Natural Language Processing. Big improvements have been made in the broad field of Natural Language Understanding during the past two decades. One big contribution to this is improvement is Neural Networks, a mathematical model inspired by biological brains. Natural Language Understanding is used in fields that require deeper understanding by applications. Google translate, Google search engine and grammar/spelling check are some examples of applications requiring deeper understanding. Thing Launcher is an application developed by A Great Thing AB. Thing Launcher is an application capable of managing other applications with different parameters. Some examples of parameters the user can use are geographic position and time. The user can as an example control what song will be played when you get home or order an Uber when you arrive to a certain destination. It is possible to control Thing Launcher today by text input. A Great Thing AB needs help developing a prototype capable of understanding text input and speech. The meaning of scalable is that it should be possible to develop, add functions and applications with as little impact as possible on up time and performance of the service. A comparison of suitable algorithms, tools and frameworks has been made in this thesis in order research what it takes to develop a scalable engine with the natural language understanding and then build a prototype from this gathered information. A theoretical comparison was made between Hidden Markov Models and Neural Networks. The results showed that Neural Networks are superior in the field of natural language understanding. The tests made in this thesis indicated that high accuracy could be achieved using neural networks. TensorFlow framework was chosen because it has many different types of neural network implemented in C/C++ ready to be used with Python and alsoand for the wide compatibility with mobile devices. The prototype should be able to identify voice commands. The prototype has two important components called Command tagger, which is going to identify which application the user wants to control and NER tagger, which is the going to identify what the user wants to do. To calculate the accuracy, two types of tests, one for each component, was executed several times to calculate how often the components guessed right after each training iteration. Each training iteration consisted of giving the components thousands of sentences to guess and giving them feedback by then letting them know the right answers. With the help of feedback, the components were molded to act right in situations like the training. The tests after the training process resulted with the Command tagger guessing right 94% of the time and the NER tagger guessing right 96% of the time. The built-in software in Android was used for speech recognition. This is a function that converts sound waves to text. A server-based solution with REST interface was developed to make the engine scalability. This thesis resulted with a working prototype that can be used to further developed into a scalable engine.
Zarrinkoub, Sahand. "Transfer Learning in Deep Structured Semantic Models for Information Retrieval". Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-286310.
Texto completoNya modeller inom informationssökning inkluderar neurala nät som genererar vektorrepresentationer för sökfrågor och dokument. Dessa vektorrepresentationer används tillsammans med ett likhetsmått för att avgöra relevansen för ett givet dokument med avseende på en sökfråga. Semantiska särdrag i sökfrågor och dokument kan kodas in i vektorrepresentationerna. Detta möjliggör informationssökning baserat på semantiska enheter, vilket ej är möjligt genom de klassiska metoderna inom informationssökning, som istället förlitar sig på den ömsesidiga förekomsten av nyckelord i sökfrågor och dokument. För att träna neurala sökmodeller krävs stora datamängder. De flesta av dagens söktjänster används i för liten utsträckning för att möjliggöra framställande av datamängder som är stora nog att träna en neural sökmodell. Därför är det önskvärt att hitta metoder som möjliggör användadet av neurala sökmodeller i domäner med små tillgängliga datamängder. I detta examensarbete har en neural sökmodell implementerats och använts i en metod avsedd att förbättra dess prestanda på en måldatamängd genom att förträna den på externa datamängder. Måldatamängden som används är WikiQA, och de externa datamängderna är Quoras Question Pairs, Reuters RCV1 samt SquAD. I experimenten erhålls de bästa enskilda modellerna genom att föträna på Question Pairs och finjustera på WikiQA. Den genomsnittliga prestandan över ett flertal tränade modeller påverkas negativt av vår metod. Detta äller både när samtliga externa datamänder används tillsammans, samt när de används enskilt, med varierande prestanda beroende på vilken datamängd som används. Att förträna på RCV1 och Question Pairs ger den största respektive minsta negativa påverkan på den genomsnittliga prestandan. Prestandan hos en slumpmässigt genererad, otränad modell är förvånansvärt hög, i genomsnitt högre än samtliga förtränade modeller, och i nivå med BM25. Den bästa genomsnittliga prestandan erhålls genom att träna på måldatamängden WikiQA utan tidigare förträning.
Prencipe, Michele Pio. "Elaborazione del Linguaggio Naturale con Metodi Probabilistici e Reti Neurali". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2021. http://amslaurea.unibo.it/24312/.
Texto completoHubková, Helena. "Named-entity recognition in Czech historical texts : Using a CNN-BiLSTM neural network model". Thesis, Uppsala universitet, Institutionen för lingvistik och filologi, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-385682.
Texto completoŠůstek, Martin. "Word2vec modely s přidanou kontextovou informací". Master's thesis, Vysoké učení technické v Brně. Fakulta informačních technologií, 2017. http://www.nusl.cz/ntk/nusl-363837.
Texto completoMorillot, Olivier. "Reconnaissance de textes manuscrits par modèles de Markov cachés et réseaux de neurones récurrents : application à l'écriture latine et arabe". Electronic Thesis or Diss., Paris, ENST, 2014. http://www.theses.fr/2014ENST0002.
Texto completoHandwriting recognition is an essential component of document analysis. One of the popular trends is to go from isolated word to word sequence recognition. Our work aims to propose a text-line recognition system without explicit word segmentation. In order to build an efficient model, we intervene at different levels of the recognition system. First of all, we introduce two new preprocessing techniques : a cleaning and a local baseline correction for text-lines. Then, a language model is built and optimized for handwritten mails. Afterwards, we propose two state-of-the-art recognition systems based on contextual HMMs (Hidden Markov Models) and recurrent neural networks BLSTM (Bi-directional Long Short-Term Memory). We optimize our systems in order to give a comparison of those two approaches. Our systems are evaluated on arabic and latin cursive handwritings and have been submitted to two international handwriting recognition competitions. At last, we introduce a strategy for some out-of-vocabulary character strings recognition, as a prospect of future work
Dunja, Vrbaški. "Primena mašinskog učenja u problemu nedostajućih podataka pri razvoju prediktivnih modela". Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2020. https://www.cris.uns.ac.rs/record.jsf?recordId=114270&source=NDLTD&language=en.
Texto completoThe problem of missing data is often present when developing predictivemodels. Instead of removing data containing missing values, methods forimputation can be applied. The dissertation proposes a methodology foranalysis of imputation performance in the development of predictive models.Based on the proposed methodology, results of the application of machinelearning algorithms, as an imputation method in the development of specificmodels, are presented.
Botha, Jan Abraham. "Probabilistic modelling of morphologically rich languages". Thesis, University of Oxford, 2014. http://ora.ox.ac.uk/objects/uuid:8df7324f-d3b8-47a1-8b0b-3a6feb5f45c7.
Texto completo