Artículos de revistas sobre el tema "Neural fields equations"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Neural fields equations".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Veltz, Romain y Olivier Faugeras. "A Center Manifold Result for Delayed Neural Fields Equations". SIAM Journal on Mathematical Analysis 45, n.º 3 (enero de 2013): 1527–62. http://dx.doi.org/10.1137/110856162.
Texto completoBelhe, Yash, Michaël Gharbi, Matthew Fisher, Iliyan Georgiev, Ravi Ramamoorthi y Tzu-Mao Li. "Discontinuity-Aware 2D Neural Fields". ACM Transactions on Graphics 42, n.º 6 (5 de diciembre de 2023): 1–11. http://dx.doi.org/10.1145/3618379.
Texto completoNicks, Rachel, Abigail Cocks, Daniele Avitabile, Alan Johnston y Stephen Coombes. "Understanding Sensory Induced Hallucinations: From Neural Fields to Amplitude Equations". SIAM Journal on Applied Dynamical Systems 20, n.º 4 (enero de 2021): 1683–714. http://dx.doi.org/10.1137/20m1366885.
Texto completoVeltz, Romain y Olivier Faugeras. "ERRATUM: A Center Manifold Result for Delayed Neural Fields Equations". SIAM Journal on Mathematical Analysis 47, n.º 2 (enero de 2015): 1665–70. http://dx.doi.org/10.1137/140962279.
Texto completoBressloff, Paul C. y Zachary P. Kilpatrick. "Nonlinear Langevin Equations for Wandering Patterns in Stochastic Neural Fields". SIAM Journal on Applied Dynamical Systems 14, n.º 1 (enero de 2015): 305–34. http://dx.doi.org/10.1137/140990371.
Texto completoScheinker, Alexander y Reeju Pokharel. "Physics-constrained 3D convolutional neural networks for electrodynamics". APL Machine Learning 1, n.º 2 (1 de junio de 2023): 026109. http://dx.doi.org/10.1063/5.0132433.
Texto completoSim, Fabio M., Eka Budiarto y Rusman Rusyadi. "Comparison and Analysis of Neural Solver Methods for Differential Equations in Physical Systems". ELKHA 13, n.º 2 (22 de octubre de 2021): 134. http://dx.doi.org/10.26418/elkha.v13i2.49097.
Texto completoITOH, MAKOTO y LEON O. CHUA. "IMAGE PROCESSING AND SELF-ORGANIZING CNN". International Journal of Bifurcation and Chaos 15, n.º 09 (septiembre de 2005): 2939–58. http://dx.doi.org/10.1142/s0218127405013794.
Texto completoWennekers, Thomas. "Dynamic Approximation of Spatiotemporal Receptive Fields in Nonlinear Neural Field Models". Neural Computation 14, n.º 8 (1 de agosto de 2002): 1801–25. http://dx.doi.org/10.1162/089976602760128027.
Texto completoMentzer, Katherine L. y J. Luc Peterson. "Neural network surrogate models for equations of state". Physics of Plasmas 30, n.º 3 (marzo de 2023): 032704. http://dx.doi.org/10.1063/5.0126708.
Texto completoSamia Atallah. "The Numerical Methods of Fractional Differential Equations". مجلة جامعة بني وليد للعلوم الإنسانية والتطبيقية 8, n.º 4 (25 de septiembre de 2023): 496–512. http://dx.doi.org/10.58916/jhas.v8i4.44.
Texto completoChu, Mengyu, Lingjie Liu, Quan Zheng, Erik Franz, Hans-Peter Seidel, Christian Theobalt y Rhaleb Zayer. "Physics informed neural fields for smoke reconstruction with sparse data". ACM Transactions on Graphics 41, n.º 4 (julio de 2022): 1–14. http://dx.doi.org/10.1145/3528223.3530169.
Texto completoGuo, Yanan, Xiaoqun Cao, Bainian Liu y Mei Gao. "Solving Partial Differential Equations Using Deep Learning and Physical Constraints". Applied Sciences 10, n.º 17 (26 de agosto de 2020): 5917. http://dx.doi.org/10.3390/app10175917.
Texto completoRaissi, Maziar, Alireza Yazdani y George Em Karniadakis. "Hidden fluid mechanics: Learning velocity and pressure fields from flow visualizations". Science 367, n.º 6481 (30 de enero de 2020): 1026–30. http://dx.doi.org/10.1126/science.aaw4741.
Texto completoKwessi, Eddy. "A Consistent Estimator of Nontrivial Stationary Solutions of Dynamic Neural Fields". Stats 4, n.º 1 (13 de febrero de 2021): 122–37. http://dx.doi.org/10.3390/stats4010010.
Texto completoDi Carlo, D., D. Heitz y T. Corpetti. "Post Processing Sparse And Instantaneous 2D Velocity Fields Using Physics-Informed Neural Networks". Proceedings of the International Symposium on the Application of Laser and Imaging Techniques to Fluid Mechanics 20 (11 de julio de 2022): 1–11. http://dx.doi.org/10.55037/lxlaser.20th.183.
Texto completoBÄKER, M., T. KALKREUTER, G. MACK y M. SPEH. "NEURAL MULTIGRID METHODS FOR GAUGE THEORIES AND OTHER DISORDERED SYSTEMS". International Journal of Modern Physics C 04, n.º 02 (abril de 1993): 239–47. http://dx.doi.org/10.1142/s0129183193000252.
Texto completoPang, Xue, Jian Wang, Faliang Yin y Jun Yao. "Construction of elliptic stochastic partial differential equations solver in groundwater flow with convolutional neural networks". Journal of Physics: Conference Series 2083, n.º 4 (1 de noviembre de 2021): 042064. http://dx.doi.org/10.1088/1742-6596/2083/4/042064.
Texto completoAqil, Marco, Selen Atasoy, Morten L. Kringelbach y Rikkert Hindriks. "Graph neural fields: A framework for spatiotemporal dynamical models on the human connectome". PLOS Computational Biology 17, n.º 1 (28 de enero de 2021): e1008310. http://dx.doi.org/10.1371/journal.pcbi.1008310.
Texto completoPeng, Liangrong y Liu Hong. "Recent Advances in Conservation–Dissipation Formalism for Irreversible Processes". Entropy 23, n.º 11 (31 de octubre de 2021): 1447. http://dx.doi.org/10.3390/e23111447.
Texto completoHu, Beichao y Dwayne McDaniel. "Applying Physics-Informed Neural Networks to Solve Navier–Stokes Equations for Laminar Flow around a Particle". Mathematical and Computational Applications 28, n.º 5 (13 de octubre de 2023): 102. http://dx.doi.org/10.3390/mca28050102.
Texto completoShinde, Rajwardhan, Onkar Dherange, Rahul Gavhane, Hemant Koul y Nilam Patil. "HANDWRITTEN MATHEMATICAL EQUATION SOLVER". International Journal of Engineering Applied Sciences and Technology 6, n.º 10 (1 de febrero de 2022): 146–49. http://dx.doi.org/10.33564/ijeast.2022.v06i10.018.
Texto completoYang, Zhou, Yuwang Xu, Jionglin Jing, Xuepeng Fu, Bofu Wang, Haojie Ren, Mengmeng Zhang y Tongxiao Sun. "Investigation of Physics-Informed Neural Networks to Reconstruct a Flow Field with High Resolution". Journal of Marine Science and Engineering 11, n.º 11 (25 de octubre de 2023): 2045. http://dx.doi.org/10.3390/jmse11112045.
Texto completoTa, Hoa, Shi Wen Wong, Nathan McClanahan, Jung-Han Kimn y Kaiqun Fu. "Exploration on Physics-Informed Neural Networks on Partial Differential Equations (Student Abstract)". Proceedings of the AAAI Conference on Artificial Intelligence 37, n.º 13 (26 de junio de 2023): 16344–45. http://dx.doi.org/10.1609/aaai.v37i13.27032.
Texto completoLiu, Xiangdong y Yu Gu. "Study of Pricing of High-Dimensional Financial Derivatives Based on Deep Learning". Mathematics 11, n.º 12 (11 de junio de 2023): 2658. http://dx.doi.org/10.3390/math11122658.
Texto completoATALAY, VOLKAN y EROL GELENBE. "PARALLEL ALGORITHM FOR COLOUR TEXTURE GENERATION USING THE RANDOM NEURAL NETWORK MODEL". International Journal of Pattern Recognition and Artificial Intelligence 06, n.º 02n03 (agosto de 1992): 437–46. http://dx.doi.org/10.1142/s0218001492000266.
Texto completoTouboul, Jonathan. "Mean-field equations for stochastic firing-rate neural fields with delays: Derivation and noise-induced transitions". Physica D: Nonlinear Phenomena 241, n.º 15 (agosto de 2012): 1223–44. http://dx.doi.org/10.1016/j.physd.2012.03.010.
Texto completoSchaback, Robert y Holger Wendland. "Kernel techniques: From machine learning to meshless methods". Acta Numerica 15 (mayo de 2006): 543–639. http://dx.doi.org/10.1017/s0962492906270016.
Texto completoWilliams, Kyle, Stephen Rudin, Daniel Bednarek, Ammad Baig, Adnan Hussain Siddiqui, Elad I. Levy y Ciprian Ionita. "226 Advancing Neurovascular Diagnostics for Abnormal Hemodynamic Conditions Through AI-Driven Physics-informed Neural Networks". Neurosurgery 70, Supplement_1 (abril de 2024): 61. http://dx.doi.org/10.1227/neu.0000000000002809_226.
Texto completoATALAY, VOLKAN, EROL GELENBE y NESE YALABIK. "THE RANDOM NEURAL NETWORK MODEL FOR TEXTURE GENERATION". International Journal of Pattern Recognition and Artificial Intelligence 06, n.º 01 (abril de 1992): 131–41. http://dx.doi.org/10.1142/s0218001492000072.
Texto completoBaazeem, Amani S., Muhammad Shoaib Arif y Kamaleldin Abodayeh. "An Efficient and Accurate Approach to Electrical Boundary Layer Nanofluid Flow Simulation: A Use of Artificial Intelligence". Processes 11, n.º 9 (13 de septiembre de 2023): 2736. http://dx.doi.org/10.3390/pr11092736.
Texto completoAra, Asmat, Oyoon Abdul Razzaq y Najeeb Alam Khan. "A Single Layer Functional Link Artificial Neural Network based on Chebyshev Polynomials for Neural Evaluations of Nonlinear Nth Order Fuzzy Differential Equations". Annals of West University of Timisoara - Mathematics and Computer Science 56, n.º 1 (1 de julio de 2018): 3–22. http://dx.doi.org/10.2478/awutm-2018-0001.
Texto completoChen, Simin, Zhixiang Liu, Wenbo Zhang y Jinkun Yang. "A Hard-Constraint Wide-Body Physics-Informed Neural Network Model for Solving Multiple Cases in Forward Problems for Partial Differential Equations". Applied Sciences 14, n.º 1 (25 de diciembre de 2023): 189. http://dx.doi.org/10.3390/app14010189.
Texto completoJakeer, Shaik, Seethi Reddy Reddisekhar Reddy, Sathishkumar Veerappampalayam Easwaramoorthy, Hayath Thameem Basha y Jaehyuk Cho. "Exploring the Influence of Induced Magnetic Fields and Double-Diffusive Convection on Carreau Nanofluid Flow through Diverse Geometries: A Comparative Study Using Numerical and ANN Approaches". Mathematics 11, n.º 17 (27 de agosto de 2023): 3687. http://dx.doi.org/10.3390/math11173687.
Texto completoPioch, Fabian, Jan Hauke Harmening, Andreas Maximilian Müller, Franz-Josef Peitzmann, Dieter Schramm y Ould el Moctar. "Turbulence Modeling for Physics-Informed Neural Networks: Comparison of Different RANS Models for the Backward-Facing Step Flow". Fluids 8, n.º 2 (26 de enero de 2023): 43. http://dx.doi.org/10.3390/fluids8020043.
Texto completoPortal-Porras, Koldo, Unai Fernandez-Gamiz, Ainara Ugarte-Anero, Ekaitz Zulueta y Asier Zulueta. "Alternative Artificial Neural Network Structures for Turbulent Flow Velocity Field Prediction". Mathematics 9, n.º 16 (14 de agosto de 2021): 1939. http://dx.doi.org/10.3390/math9161939.
Texto completoAbudusaimaiti, Mairemunisa, Abuduwali Abudukeremu y Amina Sabir. "Fixed/Preassigned-Time Stochastic Synchronization of Complex-Valued Fuzzy Neural Networks with Time Delay". Mathematics 11, n.º 17 (2 de septiembre de 2023): 3769. http://dx.doi.org/10.3390/math11173769.
Texto completoDu, Mengxuan. "Analysis of Chaos Fluctuations in Atmospheric Prediction, Fluid Mechanics and Power System Load Forecasting". Highlights in Science, Engineering and Technology 72 (15 de diciembre de 2023): 594–601. http://dx.doi.org/10.54097/3kqd5952.
Texto completoHu, Fujia, Weebeng Tay, Yilun Zhou y Boocheong Khoo. "A Novel Hybrid Deep Learning Method for Predicting the Flow Fields of Biomimetic Flapping Wings". Biomimetics 9, n.º 2 (25 de enero de 2024): 72. http://dx.doi.org/10.3390/biomimetics9020072.
Texto completoJenison, Rick L., Richard A. Reale, Joseph E. Hind y John F. Brugge. "Modeling of Auditory Spatial Receptive Fields With Spherical Approximation Functions". Journal of Neurophysiology 80, n.º 5 (1 de noviembre de 1998): 2645–56. http://dx.doi.org/10.1152/jn.1998.80.5.2645.
Texto completoChampion, Kathleen, Bethany Lusch, J. Nathan Kutz y Steven L. Brunton. "Data-driven discovery of coordinates and governing equations". Proceedings of the National Academy of Sciences 116, n.º 45 (21 de octubre de 2019): 22445–51. http://dx.doi.org/10.1073/pnas.1906995116.
Texto completoZancanaro, Matteo, Markus Mrosek, Giovanni Stabile, Carsten Othmer y Gianluigi Rozza. "Hybrid Neural Network Reduced Order Modelling for Turbulent Flows with Geometric Parameters". Fluids 6, n.º 8 (22 de agosto de 2021): 296. http://dx.doi.org/10.3390/fluids6080296.
Texto completoBohner, Martin, Giuseppe Caristi, Shapour Heidarkhani y Shahin Moradi. "Three solutions for a discrete fourth-order boundary value problem with four parameters". Boletim da Sociedade Paranaense de Matemática 42 (19 de abril de 2024): 1–13. http://dx.doi.org/10.5269/bspm.64229.
Texto completoTodorova, Sonia y Valérie Ventura. "Neural Decoding: A Predictive Viewpoint". Neural Computation 29, n.º 12 (diciembre de 2017): 3290–310. http://dx.doi.org/10.1162/neco_a_01020.
Texto completoda Silva, Severino Horácio. "Lower Semicontinuity of Global Attractors for a Class of Evolution Equations of Neural Fields Type in a Bounded Domain". Differential Equations and Dynamical Systems 26, n.º 4 (7 de agosto de 2015): 371–91. http://dx.doi.org/10.1007/s12591-015-0258-6.
Texto completoGajamannage, K., D. I. Jayathilake, Y. Park y E. M. Bollt. "Recurrent neural networks for dynamical systems: Applications to ordinary differential equations, collective motion, and hydrological modeling". Chaos: An Interdisciplinary Journal of Nonlinear Science 33, n.º 1 (enero de 2023): 013109. http://dx.doi.org/10.1063/5.0088748.
Texto completoSitte, Michael Philip y Nguyen Anh Khoa Doan. "Velocity reconstruction in puffing pool fires with physics-informed neural networks". Physics of Fluids 34, n.º 8 (agosto de 2022): 087124. http://dx.doi.org/10.1063/5.0097496.
Texto completoYan, Xiaohui, Fu Du, Tianqi Zhang, Qian Cui, Zuhao Zhu y Ziming Song. "Predicting the Flow Fields in Meandering Rivers with a Deep Super-Resolution Convolutional Neural Network". Water 16, n.º 3 (28 de enero de 2024): 425. http://dx.doi.org/10.3390/w16030425.
Texto completoHu, Yaowei, Yongkai Wu, Lu Zhang y Xintao Wu. "A Generative Adversarial Framework for Bounding Confounded Causal Effects". Proceedings of the AAAI Conference on Artificial Intelligence 35, n.º 13 (18 de mayo de 2021): 12104–12. http://dx.doi.org/10.1609/aaai.v35i13.17437.
Texto completoPeng, Jiang-Zhou, Xianglei Liu, Zhen-Dong Xia, Nadine Aubry, Zhihua Chen y Wei-Tao Wu. "Data-Driven Modeling of Geometry-Adaptive Steady Heat Convection Based on Convolutional Neural Networks". Fluids 6, n.º 12 (1 de diciembre de 2021): 436. http://dx.doi.org/10.3390/fluids6120436.
Texto completo