Artículos de revistas sobre el tema "Neural activity recording"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte los 50 mejores artículos de revistas para su investigación sobre el tema "Neural activity recording".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Explore artículos de revistas sobre una amplia variedad de disciplinas y organice su bibliografía correctamente.
Xu, Wei, Jingxin Wang, Simin Cheng y Xiaomin Xu. "Flexible organic transistors for neural activity recording". Applied Physics Reviews 9, n.º 3 (septiembre de 2022): 031308. http://dx.doi.org/10.1063/5.0102401.
Texto completoLoi, Daniela, Caterina Carboni, Gianmarco Angius, Gian Nicola Angotzi, Massimo Barbaro, Luigi Raffo, Stanisa Raspopovic y Xavier Navarro. "Peripheral Neural Activity Recording and Stimulation System". IEEE Transactions on Biomedical Circuits and Systems 5, n.º 4 (agosto de 2011): 368–79. http://dx.doi.org/10.1109/tbcas.2011.2123097.
Texto completoAslam, J., P. Merken, R. Huys, M. Akif Erismis, R. Firat Yazicioglu, R. Puers y C. Van Hoof. "Activity based neural front-end recording system". Electronics Letters 47, n.º 21 (2011): 1170. http://dx.doi.org/10.1049/el.2011.1966.
Texto completoLiu, Xin, Chi Ren, Zhisheng Huang, Madison Wilson, Jeong-Hoon Kim, Yichen Lu, Mehrdad Ramezani, Takaki Komiyama y Duygu Kuzum. "Decoding of cortex-wide brain activity from local recordings of neural potentials". Journal of Neural Engineering 18, n.º 6 (15 de noviembre de 2021): 066009. http://dx.doi.org/10.1088/1741-2552/ac33e7.
Texto completoTan, Kwan Ling, Ming Yuan Cheng, Wei Guo Chen, Rui Qi Lim, Maria Ramona B. Damalerio, Lei Yao, Peng Li, Yuan Dong Gu y Min Kyu Je. "Polyethylene Glycol-Coated Polyimide-Based Probe with Neural Recording IC for Chronic Neural Recording". Advanced Materials Research 849 (noviembre de 2013): 183–88. http://dx.doi.org/10.4028/www.scientific.net/amr.849.183.
Texto completoHiramoto, Masaki y Hollis T. Cline. "Tetrode Recording in the Xenopus laevis Visual System Using Multichannel Glass Electrodes". Cold Spring Harbor Protocols 2021, n.º 11 (3 de febrero de 2021): pdb.prot107086. http://dx.doi.org/10.1101/pdb.prot107086.
Texto completoNagayasu, Kazuki. "Viral vectors for manipulation and recording of neural activity". Proceedings for Annual Meeting of The Japanese Pharmacological Society 93 (2020): 2—MS2. http://dx.doi.org/10.1254/jpssuppl.93.0_2-ms2.
Texto completoSher, A., E. J. Chichilnisky, W. Dabrowski, A. A. Grillo, M. Grivich, D. Gunning, P. Hottowy et al. "Large-scale multielectrode recording and stimulation of neural activity". Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 579, n.º 2 (septiembre de 2007): 895–900. http://dx.doi.org/10.1016/j.nima.2007.05.309.
Texto completoPégard, Nicolas C., Hsiou-Yuan Liu, Nick Antipa, Maximillian Gerlock, Hillel Adesnik y Laura Waller. "Compressive light-field microscopy for 3D neural activity recording". Optica 3, n.º 5 (12 de mayo de 2016): 517. http://dx.doi.org/10.1364/optica.3.000517.
Texto completoLiang, Bo y Xuesong Ye. "Towards high-density recording of brain-wide neural activity". Science China Materials 61, n.º 3 (8 de enero de 2018): 432–34. http://dx.doi.org/10.1007/s40843-017-9175-3.
Texto completoVoitiuk, Kateryna, Jinghui Geng, Matthew G. Keefe, David F. Parks, Sebastian E. Sanso, Nico Hawthorne, Daniel B. Freeman et al. "Light-weight electrophysiology hardware and software platform for cloud-based neural recording experiments". Journal of Neural Engineering 18, n.º 6 (12 de noviembre de 2021): 066004. http://dx.doi.org/10.1088/1741-2552/ac310a.
Texto completoVėbraitė, Ieva, Moshe David-Pur, David Rand, Eric Daniel Głowacki y Yael Hanein. "Electrophysiological investigation of intact retina with soft printed organic neural interface". Journal of Neural Engineering 18, n.º 6 (19 de noviembre de 2021): 066017. http://dx.doi.org/10.1088/1741-2552/ac36ab.
Texto completoCreamer, Matthew S., Kevin S. Chen, Andrew M. Leifer y Jonathan W. Pillow. "Correcting motion induced fluorescence artifacts in two-channel neural imaging". PLOS Computational Biology 18, n.º 9 (28 de septiembre de 2022): e1010421. http://dx.doi.org/10.1371/journal.pcbi.1010421.
Texto completoGuan, S., J. Wang, X. Gu, Y. Zhao, R. Hou, H. Fan, L. Zou et al. "Elastocapillary self-assembled neurotassels for stable neural activity recordings". Science Advances 5, n.º 3 (marzo de 2019): eaav2842. http://dx.doi.org/10.1126/sciadv.aav2842.
Texto completoCarcaud, Julie, Marianne Otte, Bernd Grünewald, Albrecht Haase, Jean-Christophe Sandoz y Martin Beye. "Multisite imaging of neural activity using a genetically encoded calcium sensor in the honey bee". PLOS Biology 21, n.º 1 (31 de enero de 2023): e3001984. http://dx.doi.org/10.1371/journal.pbio.3001984.
Texto completoRoth, Richard H. y Jun B. Ding. "From Neurons to Cognition: Technologies for Precise Recording of Neural Activity Underlying Behavior". BME Frontiers 2020 (25 de diciembre de 2020): 1–20. http://dx.doi.org/10.34133/2020/7190517.
Texto completoKruse-Andersen, S., J. Kolberg y E. Jakobsen. "Neural Network for Automatic Analysis of Motility Data". Methods of Information in Medicine 33, n.º 01 (1994): 157–60. http://dx.doi.org/10.1055/s-0038-1634978.
Texto completoGraudejus, Oliver, Barclay Morrison, Cezar Goletiani, Zhe Yu y Sigurd Wagner. "Encapsulating Elastically Stretchable Neural Interfaces: Yield, Resolution, and Recording/Stimulation of Neural Activity". Advanced Functional Materials 22, n.º 3 (8 de diciembre de 2011): 640–51. http://dx.doi.org/10.1002/adfm.201102290.
Texto completoObaid, Abdulmalik, Mina-Elraheb Hanna, Yu-Wei Wu, Mihaly Kollo, Romeo Racz, Matthew R. Angle, Jan Müller et al. "Massively parallel microwire arrays integrated with CMOS chips for neural recording". Science Advances 6, n.º 12 (marzo de 2020): eaay2789. http://dx.doi.org/10.1126/sciadv.aay2789.
Texto completoDescamps, E., V. Castagnola, S. Charlot, C. Blatché y C. Bergaud. "Nanostructured flexible implantable microelectrodes for stimulation and recording neural activity". Annals of Physical and Rehabilitation Medicine 55 (octubre de 2012): e346. http://dx.doi.org/10.1016/j.rehab.2012.07.877.
Texto completoAkasaki, Takafumi y Yoshio Hata. "Chronic recording of neural activity of LGN in behaving rat". Neuroscience Research 58 (enero de 2007): S98. http://dx.doi.org/10.1016/j.neures.2007.06.1136.
Texto completoCollaert, Nadine, Carolina Mora Lopez, Daire J. Cott, Jordi Cools, Dries Braeken y Michael De Volder. "In vitro recording of neural activity using carbon nanosheet microelectrodes". Carbon 67 (febrero de 2014): 178–84. http://dx.doi.org/10.1016/j.carbon.2013.09.079.
Texto completoHarris, Kenneth D. "Hallucinations and nonsensory correlates of neural activity". Behavioral and Brain Sciences 27, n.º 6 (diciembre de 2004): 796. http://dx.doi.org/10.1017/s0140525x04310186.
Texto completoSturgill, Brandon, Rahul Radhakrishna, Teresa Thai, Sourav Patnaik, Jeffrey Capadona y Joseph Pancrazio. "Characterization of Active Electrode Yield for Intracortical Arrays: Awake versus Anesthesia". Micromachines 13, n.º 3 (20 de marzo de 2022): 480. http://dx.doi.org/10.3390/mi13030480.
Texto completoHumphries, Mark D. "Dynamical networks: Finding, measuring, and tracking neural population activity using network science". Network Neuroscience 1, n.º 4 (diciembre de 2017): 324–38. http://dx.doi.org/10.1162/netn_a_00020.
Texto completoNeto, Joana P., Gonçalo Lopes, João Frazão, Joana Nogueira, Pedro Lacerda, Pedro Baião, Arno Aarts et al. "Validating silicon polytrodes with paired juxtacellular recordings: method and dataset". Journal of Neurophysiology 116, n.º 2 (1 de agosto de 2016): 892–903. http://dx.doi.org/10.1152/jn.00103.2016.
Texto completoNakamura, Shinya, Michael V. Baratta, Matthew B. Pomrenze, Samuel D. Dolzani y Donald C. Cooper. "High fidelity optogenetic control of individual prefrontal cortical pyramidal neurons in vivo". F1000Research 1 (30 de julio de 2012): 7. http://dx.doi.org/10.12688/f1000research.1-7.v1.
Texto completoHuan, Yu, Jeffrey P. Gill, Johanna B. Fritzinger, Paras R. Patel, Julianna M. Richie, Elena Della Valle, James D. Weiland, Cynthia A. Chestek y Hillel J. Chiel. "Carbon fiber electrodes for intracellular recording and stimulation". Journal of Neural Engineering 18, n.º 6 (1 de diciembre de 2021): 066033. http://dx.doi.org/10.1088/1741-2552/ac3dd7.
Texto completoNetser, Shai, Arkadeb Dutta y Yoram Gutfreund. "Ongoing activity in the optic tectum is correlated on a trial-by-trial basis with the pupil dilation response". Journal of Neurophysiology 111, n.º 5 (1 de marzo de 2014): 918–29. http://dx.doi.org/10.1152/jn.00527.2013.
Texto completoFiáth, Richárd, Katharina T. Hofer, Vivien Csikós, Domonkos Horváth, Tibor Nánási, Kinga Tóth, Frederick Pothof et al. "Long-term recording performance and biocompatibility of chronically implanted cylindrically-shaped, polymer-based neural interfaces". Biomedical Engineering / Biomedizinische Technik 63, n.º 3 (27 de junio de 2018): 301–15. http://dx.doi.org/10.1515/bmt-2017-0154.
Texto completoKim, Chaebin, Joonsoo Jeong y Sung June Kim. "Recent Progress on Non-Conventional Microfabricated Probes for the Chronic Recording of Cortical Neural Activity". Sensors 19, n.º 5 (2 de marzo de 2019): 1069. http://dx.doi.org/10.3390/s19051069.
Texto completoWilliams, Brice, Anderson Speed y Bilal Haider. "A novel device for real-time measurement and manipulation of licking behavior in head-fixed mice". Journal of Neurophysiology 120, n.º 6 (1 de diciembre de 2018): 2975–87. http://dx.doi.org/10.1152/jn.00500.2018.
Texto completoWang, Haochuan, Qian Ma, Keming Chen, Hanqing Zhang, Yinyan Yang, Nenggan Zheng y Hui Hong. "An Ultra-Low-Noise, Low Power and Miniaturized Dual-Channel Wireless Neural Recording Microsystem". Biosensors 12, n.º 8 (8 de agosto de 2022): 613. http://dx.doi.org/10.3390/bios12080613.
Texto completoLiu, Shijia y Sung Han. "Simultaneous recording of breathing and neural activity in awake behaving mice". STAR Protocols 3, n.º 2 (junio de 2022): 101412. http://dx.doi.org/10.1016/j.xpro.2022.101412.
Texto completoJun, James J., Nicholas A. Steinmetz, Joshua H. Siegle, Daniel J. Denman, Marius Bauza, Brian Barbarits, Albert K. Lee et al. "Fully integrated silicon probes for high-density recording of neural activity". Nature 551, n.º 7679 (9 de noviembre de 2017): 232–36. http://dx.doi.org/10.1038/nature24636.
Texto completoLu, Rong-Wen, Qiu-Xiang Zhang y Xin-Cheng Yao. "Circular polarization intrinsic optical signal recording of stimulus-evoked neural activity". Optics Letters 36, n.º 10 (11 de mayo de 2011): 1866. http://dx.doi.org/10.1364/ol.36.001866.
Texto completoMoldovan, Carmen, V. Ilian, Ghe Constantin, Rodica Iosub, M. Modreanu, Ioana Dinoiu, B. Firtat y C. Voitincu. "Micromachining of a silicon multichannel microprobe for neural electrical activity recording". Sensors and Actuators A: Physical 99, n.º 1-2 (abril de 2002): 119–24. http://dx.doi.org/10.1016/s0924-4247(01)00901-3.
Texto completoPickard, R. S., P. Wall, M. Ubeid, G. Ensell y K. H. Leong. "Recording neural activity in the honeybee brain with micromachined silicon sensors". Sensors and Actuators B: Chemical 1, n.º 1-6 (enero de 1990): 460–63. http://dx.doi.org/10.1016/0925-4005(90)80249-y.
Texto completoInagaki, Shigenori y Takeharu Nagai. "Current progress in genetically encoded voltage indicators for neural activity recording". Current Opinion in Chemical Biology 33 (agosto de 2016): 95–100. http://dx.doi.org/10.1016/j.cbpa.2016.05.023.
Texto completoGuo, Yichuan, Zhiqiang Fang, Mingde Du, Long Yang, Leihou Shao, Xiaorui Zhang, Li Li et al. "Flexible and biocompatible nanopaper-based electrode arrays for neural activity recording". Nano Research 11, n.º 10 (9 de febrero de 2018): 5604–14. http://dx.doi.org/10.1007/s12274-018-2005-0.
Texto completoLibbrecht, Sarah, Luis Hoffman, Marleen Welkenhuysen, Chris Van den Haute, Veerle Baekelandt, Dries Braeken y Sebastian Haesler. "Proximal and distal modulation of neural activity by spatially confined optogenetic activation with an integrated high-density optoelectrode". Journal of Neurophysiology 120, n.º 1 (1 de julio de 2018): 149–61. http://dx.doi.org/10.1152/jn.00888.2017.
Texto completoWei, Weichen y Xuejiao Wang. "Graphene-Based Electrode Materials for Neural Activity Detection". Materials 14, n.º 20 (18 de octubre de 2021): 6170. http://dx.doi.org/10.3390/ma14206170.
Texto completoZhang, Chaoxing, Teresa H. Wen, Khaleel A. Razak, Jiajia Lin, Edgar Villafana, Hector Jimenez y Huinan Liu. "Fabrication and Characterization of Biodegradable Metal Based Microelectrodes for In Vivo Neural Recording". MRS Advances 4, n.º 46-47 (2019): 2471–77. http://dx.doi.org/10.1557/adv.2019.302.
Texto completoRoth, Bradley J. "Can MRI Be Used as a Sensor to Record Neural Activity?" Sensors 23, n.º 3 (25 de enero de 2023): 1337. http://dx.doi.org/10.3390/s23031337.
Texto completoSnellings, André, Oren Sagher, David J. Anderson y J. Wayne Aldridge. "Identification of the subthalamic nucleus in deep brain stimulation surgery with a novel wavelet-derived measure of neural background activity". Journal of Neurosurgery 111, n.º 4 (octubre de 2009): 767–74. http://dx.doi.org/10.3171/2008.11.jns08392.
Texto completoVidruk, E. H. y R. Sorkness. "Circumsinus branch: a convenient source of baro- and chemoreceptor activity in dogs". Journal of Applied Physiology 76, n.º 3 (1 de marzo de 1994): 1384–87. http://dx.doi.org/10.1152/jappl.1994.76.3.1384.
Texto completoPancrazio y Cogan. "Editorial for the Special Issue on Neural Electrodes: Design and Applications". Micromachines 10, n.º 7 (12 de julio de 2019): 466. http://dx.doi.org/10.3390/mi10070466.
Texto completoMukherjee, Didhiti, Alex J. Yonk, Greta Sokoloff y Mark S. Blumberg. "Wakefulness suppresses retinal wave-related neural activity in visual cortex". Journal of Neurophysiology 118, n.º 2 (1 de agosto de 2017): 1190–97. http://dx.doi.org/10.1152/jn.00264.2017.
Texto completoSaxena, Rajat, Warsha Barde y Sachin S. Deshmukh. "Inexpensive, scalable camera system for tracking rats in large spaces". Journal of Neurophysiology 120, n.º 5 (1 de noviembre de 2018): 2383–95. http://dx.doi.org/10.1152/jn.00215.2018.
Texto completoDehnen, Gert, Marcel S. Kehl, Alana Darcher, Tamara T. Müller, Jakob H. Macke, Valeri Borger, Rainer Surges y Florian Mormann. "Duplicate Detection of Spike Events: A Relevant Problem in Human Single-Unit Recordings". Brain Sciences 11, n.º 6 (8 de junio de 2021): 761. http://dx.doi.org/10.3390/brainsci11060761.
Texto completo