Literatura académica sobre el tema "Network thermodynamics"
Crea una cita precisa en los estilos APA, MLA, Chicago, Harvard y otros
Consulte las listas temáticas de artículos, libros, tesis, actas de conferencias y otras fuentes académicas sobre el tema "Network thermodynamics".
Junto a cada fuente en la lista de referencias hay un botón "Agregar a la bibliografía". Pulsa este botón, y generaremos automáticamente la referencia bibliográfica para la obra elegida en el estilo de cita que necesites: APA, MLA, Harvard, Vancouver, Chicago, etc.
También puede descargar el texto completo de la publicación académica en formato pdf y leer en línea su resumen siempre que esté disponible en los metadatos.
Artículos de revistas sobre el tema "Network thermodynamics"
Wampler, Taylor y Andre C. Barato. "Skewness and kurtosis in stochastic thermodynamics". Journal of Physics A: Mathematical and Theoretical 55, n.º 1 (9 de diciembre de 2021): 014002. http://dx.doi.org/10.1088/1751-8121/ac3b0c.
Texto completoTasnim, Farita y David H. Wolpert. "Stochastic Thermodynamics of Multiple Co-Evolving Systems—Beyond Multipartite Processes". Entropy 25, n.º 7 (17 de julio de 2023): 1078. http://dx.doi.org/10.3390/e25071078.
Texto completoBorlenghi, Simone y Anna Delin. "Stochastic Thermodynamics of Oscillators’ Networks". Entropy 20, n.º 12 (19 de diciembre de 2018): 992. http://dx.doi.org/10.3390/e20120992.
Texto completoLewis, Edwin R. "Network thermodynamics revisited". Biosystems 34, n.º 1-3 (1995): 47–63. http://dx.doi.org/10.1016/0303-2647(94)01456-h.
Texto completoŠesták, Jaroslav. "Studies in network thermodynamics". Thermochimica Acta 108 (noviembre de 1986): 393. http://dx.doi.org/10.1016/0040-6031(86)85106-1.
Texto completoMatsoukas, Themis. "Thermodynamics Beyond Molecules: Statistical Thermodynamics of Probability Distributions". Entropy 21, n.º 9 (13 de septiembre de 2019): 890. http://dx.doi.org/10.3390/e21090890.
Texto completoDu, Bin, Daniel C. Zielinski, Jonathan M. Monk y Bernhard O. Palsson. "Thermodynamic favorability and pathway yield as evolutionary tradeoffs in biosynthetic pathway choice". Proceedings of the National Academy of Sciences 115, n.º 44 (11 de octubre de 2018): 11339–44. http://dx.doi.org/10.1073/pnas.1805367115.
Texto completoReichl, L. E. "Book review:Studies in network thermodynamics". Journal of Statistical Physics 50, n.º 1-2 (enero de 1988): 465. http://dx.doi.org/10.1007/bf01023005.
Texto completoZhang, Mingjin, Peng Zhang, Yuhan Zhang, Minghai Yang, Xiaofeng Li, Xiaogang Dong y Luchang Yang. "SAR-to-Optical Image Translation via an Interpretable Network". Remote Sensing 16, n.º 2 (8 de enero de 2024): 242. http://dx.doi.org/10.3390/rs16020242.
Texto completoKeegan, Michael, Hava T. Siegelmann, Edward A. Rietman, Giannoula Lakka Klement y Jack A. Tuszynski. "Gibbs Free Energy, a Thermodynamic Measure of Protein–Protein Interactions, Correlates with Neurologic Disability". BioMedInformatics 1, n.º 3 (14 de diciembre de 2021): 201–10. http://dx.doi.org/10.3390/biomedinformatics1030013.
Texto completoTesis sobre el tema "Network thermodynamics"
Squadrani, Lorenzo. "Deep neural networks and thermodynamics". Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Buscar texto completoPierantozzi, Mariano. "Mathematical modeling for Thermodynamics: Thermophysical Properties and Equation of State". Doctoral thesis, Università Politecnica delle Marche, 2015. http://hdl.handle.net/11566/242931.
Texto completoAbstract In the modern multicultural and multidisciplinary society, always adopting more and more wider prospective than before. In this thesis, we try to adopt a multidisciplinary method, which involves Mathematics, Physics, but also Chemistry, Statistics, and in general the scientific engineering. The aspects explained are thermo physical properties, and Equations of State (EOS) of gases. Regarding thermo physical properties have been analysed Surface Tension, Thermal Conductivity, Viscosity, and the second virial coefficient. On this arguments, the work had been subdivided between the gathering of experimental data, the analysing of data with statistical techniques transforming them to more reliable data than row. The second step was to collect the equations of literature. Then we went ahead studying the sensibility of data to find out which physical properties could have bigger impact to property examined. At the end, we looked for an equation that could represent experimental data in a better way. We always preferred the scaled equations that respect chemical and physical aspects, to the empirical ones. Comparing our results with better equations in literature, our results are always better, in fact all of the have been published in the best international journals on this subject. A separate discussion is that of EOS. Analyzing the previous literature, the first thing that came to our minds was that to find the best possible equation is impossible. Or as Martin wrote copying words of the famous fables Snow White: “Mirror mirror on the wall, who is the fairest of them all?”. We choose to modify The Carnahan-Starling-De Santis (CSD) equation of state, a parametrich equation with good results in the calculation of Vapor Liquid Equilibrium. Due to multi objective minimization techniques the performance of CSD has been improved. These are the principals aspect brought to light in this research, which apart from the results, with good results has opened to me the world of research.
Ozaki, Hiroto. "Study of Network Structures and Rheological Properties of Physical Gels". Kyoto University, 2017. http://hdl.handle.net/2433/227633.
Texto completoLoutchko, Dimitri. "A Theoretical Study of the Tryptophan Synthase Enzyme Reaction Network". Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19384.
Texto completoThe channeling enzyme tryptophan synthase provides a paradigmatic example of a chemical nanomachine with two distinct catalytic subunits. It catalyzes the biosynthesis of tryptophan, whereby the catalytic activity in a subunit is enhanced or inhibited depending on the state of the other subunit, gates control the accessibility of the reactive sites and the intermediate product indole is directly channeled within the protein. The first single-molecule kinetic model of the enzyme is constructed. Simulations reveal strong correlations in the states of the active centers and the emergent synchronization. Thermodynamic data is used to calculate the rate constant for the reverse indole channeling. Using the fully reversible single-molecule model, the stochastic thermodynamics of the enzyme is closely examined. The current methods describing information exchange in bipartite systems are extended to arbitrary Markov networks and applied to the kinetic model. They allow the characterization of the information exchange between the subunits resulting from allosteric cross-regulations and channeling. The final part of this work is focused on chemical reaction networks of metabolites and enzymes. Algebraic semigroup models are constructed based on a formalism that emphasizes the catalytic function of reactants within the network. A correspondence between coarse-graining procedures and semigroup congruences respecting the functional structure is established. A family of congruences that leads to a rather unusual coarse-graining is analyzed: The network is covered with local patches in a way that the local information on the network is fully retained, but the environment of each patch is not resolved. Whereas classical coarse-graining procedures would fix a particular patch and delete information about the environment, the algebraic approach keeps the structure of all local patches and allows the interaction of functions within distinct patches.
Hui, Qing. "Nonlinear dynamical systems and control for large-scale, hybrid, and network systems". Diss., Atlanta, Ga. : Georgia Institute of Technology, 2008. http://hdl.handle.net/1853/24635.
Texto completoCommittee Chair: Haddad, Wassim; Committee Member: Feron, Eric; Committee Member: JVR, Prasad; Committee Member: Taylor, David; Committee Member: Tsiotras, Panagiotis
Grondin, Yohann. "Biological networks : a thermodynamical approach". Thesis, University of Leicester, 2006. http://hdl.handle.net/2381/30584.
Texto completoKotjabasakis, E. "Design of flexible heat exchanger networks". Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.235140.
Texto completoGarcia, Cantu Ros Anselmo. "Thermodynamic and kinetic aspects of interaction networks". Doctoral thesis, Universite Libre de Bruxelles, 2007. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210420.
Texto completo
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Honorato-Zimmer, Ricardo. "On a thermodynamic approach to biomolecular interaction networks". Thesis, University of Edinburgh, 2017. http://hdl.handle.net/1842/28904.
Texto completoJones, Paul Simon. "Targeting and design for heat exchanger networks under multiple base case operation". Thesis, University of Manchester, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.292518.
Texto completoLibros sobre el tema "Network thermodynamics"
Peusner, Leonardo. Studies in network thermodynamics. Amsterdam: Elsevier, 1986.
Buscar texto completoGermany) Minisymposium on Thermodynamics of Surfaces (1995 Berlin. Thermodynamics of surfaces: Minisymposium, May 11-13, 1995 : European Thermodynamics Network, thermodynamics of complex systems. Berlin: Technische Universität Berlin, 1996.
Buscar texto completoPeusner, L. The principles of network thermodynamics: Theory and biophysical applications. Lincoln, Mass: Entropy Ltd., 1987.
Buscar texto completoPiotrowska, Ewa. Zastępcza sieć cieplna wymiennika ciepła pracującego w stanach przejściowych: The equivalent thermal network for heat exchanger working in the transient states. Warszawa: Wydawnictwo SGGW, 2013.
Buscar texto completoMeeting, American Society of Mechanical Engineers Winter. Network thermodynamics, heat and mass transfer in biotechnology: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Boston, Massachusetts, December 13-18, 1987 : sponsored by the Bioengineering Division, ASME, the Heat Transfer Division, ASME. New York: American Society of Mechanical Engineers, 1987.
Buscar texto completoAmerican Society of Mechanical Engineers. Winter Meeting. Network thermodynamics, heat and mass transfer in biotechnology: Presented at the Winter Annual Meeting of the American Society of Mechanical Engineers, Boston, Massachusetts, December 13-18, 1987. New York, N.Y. (345 E. 47th St., New York 10017): ASME, 1987.
Buscar texto completoBejan, Adrian y Giuseppe Grazzini, eds. Shape and Thermodynamics. Florence: Firenze University Press, 2008. http://dx.doi.org/10.36253/978-88-8453-836-9.
Texto completoIto, Sosuke. Information Thermodynamics on Causal Networks and its Application to Biochemical Signal Transduction. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1664-6.
Texto completoMüller, Berndt. Neural networks: An introduction. 2a ed. Berlin: Springer-Verlag, 1991.
Buscar texto completoMüller, Berndt. Neural networks: An introduction. 2a ed. Berlin: Springer, 1995.
Buscar texto completoCapítulos de libros sobre el tema "Network thermodynamics"
Imai, Y. "Graded Modelling of Exocrine Secretion Using Network Thermodynamics". En Epithelial Secretion of Water and Electrolytes, 129–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-75033-5_9.
Texto completoGordon, Manfred. "Thermodynamics of Casein Gels and the Universality of Network Theories". En Integration of Fundamental Polymer Science and Technology, 167–76. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-009-4185-4_22.
Texto completoHaddad, Wassim M. "The Role of Systems Biology, Neuroscience, and Thermodynamics in Network Control and Learning". En Handbook of Reinforcement Learning and Control, 763–817. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-60990-0_25.
Texto completoDoty, David, Trent A. Rogers, David Soloveichik, Chris Thachuk y Damien Woods. "Thermodynamic Binding Networks". En Lecture Notes in Computer Science, 249–66. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66799-7_16.
Texto completoFeinberg, Martin. "Quasi-Thermodynamic Kinetic Systems". En Foundations of Chemical Reaction Network Theory, 273–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-03858-8_13.
Texto completoUtracki, L. A. "Thermodynamics and Kinetics of Phase Separation". En Interpenetrating Polymer Networks, 77–123. Washington, DC: American Chemical Society, 1994. http://dx.doi.org/10.1021/ba-1994-0239.ch003.
Texto completoIto, Sosuke. "Information Thermodynamics on Causal Networks". En Information Thermodynamics on Causal Networks and its Application to Biochemical Signal Transduction, 61–82. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1664-6_6.
Texto completoRostiashvili, V. G. y T. A. Vilgis. "Statistical Thermodynamics of Polymeric Networks". En Encyclopedia of Polymeric Nanomaterials, 1–18. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-36199-9_308-1.
Texto completoRostiashvili, V. G. y T. A. Vilgis. "Statistical Thermodynamics of Polymeric Networks". En Encyclopedia of Polymeric Nanomaterials, 2254–68. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-29648-2_308.
Texto completoYe, Cheng, Andrea Torsello, Richard C. Wilson y Edwin R. Hancock. "Thermodynamics of Time Evolving Networks". En Graph-Based Representations in Pattern Recognition, 315–24. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-18224-7_31.
Texto completoActas de conferencias sobre el tema "Network thermodynamics"
Pavlović, Marina Simović, Maja Pagnacco, Bojana Bokić, Darko Vasiljević, Marija Radmilović-Rađenović, Branislav Rađenović y Branko Kolarić. "Breaking Barriers: Molding Thermodynamics by Geometry of Nanostructures". En 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10648049.
Texto completoZitelli, Mario. "A Thermodynamic Study of Low-power Modal Multiplexed Systems". En 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–3. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10647332.
Texto completoKiritsis, E. y T. Taylor. "Thermodynamics of D-brane probes". En European Network on Physics beyond the Standard Model. Trieste, Italy: Sissa Medialab, 1999. http://dx.doi.org/10.22323/1.002.0027.
Texto completoTaliaferro, Matthew E. y Samuel R. Darr. "Modeling Internal Launch Vehicle Fluid Flow and Thermodynamics, Part 1: Thermodynamic Tank Network Solver". En AIAA SCITECH 2024 Forum. Reston, Virginia: American Institute of Aeronautics and Astronautics, 2024. http://dx.doi.org/10.2514/6.2024-2293.
Texto completoGaymann, Audrey, Giorgio Schiaffini, Michela Massini, Francesco Montomoli y Alessandro Corsini. "Neural network topology for wind turbine analysis". En European Conference on Turbomachinery Fluid Dynamics and Thermodynamics. European Turbomachinery Society, 2019. http://dx.doi.org/10.29008/etc2019-174.
Texto completoPothineni, Dinesh, Pratik Mishra y Aadil Rasheed. "Social thermodynamics: Modelling communication dynamics in social network". En 2012 International Conference on Future Generation Communication Technology (FGCT). IEEE, 2012. http://dx.doi.org/10.1109/fgct.2012.6476582.
Texto completoBerg, Jordan M., D. H. S. Maithripala, Qing Hui y Wassim M. Haddad. "Thermodynamics-based network systems control by thermal analogy". En 2012 IEEE 51st Annual Conference on Decision and Control (CDC). IEEE, 2012. http://dx.doi.org/10.1109/cdc.2012.6426012.
Texto completoChen, Ruijun. "The Network Locating Principle in Flexible Circuit Board Assembly". En ASME 2009 International Mechanical Engineering Congress and Exposition. ASMEDC, 2009. http://dx.doi.org/10.1115/imece2009-10305.
Texto completoLayton, Astrid, John Reap y Bert Bras. "A Correlation Between Thermal Efficiency and Biological Network Cyclicity". En ASME 2011 5th International Conference on Energy Sustainability. ASMEDC, 2011. http://dx.doi.org/10.1115/es2011-54787.
Texto completoIwai, Takuya, Daichi Kominami, Masayuki Murata y Tetsuya Yomo. "Thermodynamics-Based Entropy Adjustment for Robust Self-Organized Network Controls". En 2014 IEEE 38th Annual Computer Software and Applications Conference (COMPSAC). IEEE, 2014. http://dx.doi.org/10.1109/compsac.2014.48.
Texto completoInformes sobre el tema "Network thermodynamics"
Haddad, Wassim M. Complexity, Robustness, and Network Thermodynamics in Large-Scale and Multiagent Systems: A Hybrid Control Approach. Fort Belvoir, VA: Defense Technical Information Center, enero de 2012. http://dx.doi.org/10.21236/ada565203.
Texto completoTse, David, Piyush Gupta y Devavrat Shah. Thermodynamics of Large-Scale Heterogeneous Wireless Networks. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2014. http://dx.doi.org/10.21236/ada601231.
Texto completoSteele, W. V., R. D. Chirico, S. E. Knipmeyer y A. Nguyen. The thermodynamic properties of 2-aminobiphenyl (an intermediate in the carbazole/hydrogen reaction network). Office of Scientific and Technical Information (OSTI), diciembre de 1990. http://dx.doi.org/10.2172/6307021.
Texto completoHaddad, Wassim M. y Quirino Balzano. A Network Thermodynamic Framework for the Analysis and Control Design of Large-Scale Dynamical Systems. Fort Belvoir, VA: Defense Technical Information Center, marzo de 2006. http://dx.doi.org/10.21236/ada448643.
Texto completoPerdigão, Rui A. P. Strengthening Multi-Hazard Resilience with Quantum Aerospace Systems Intelligence. Synergistic Manifolds, enero de 2024. http://dx.doi.org/10.46337/240301.
Texto completoMcKinley, James P. y Jonathan Istok. Stability of U(VI) and Tc(VII) Reducing Microbial Communities to Environmental Perturbation: Development and Testing of a Thermodynamic Network Model. Office of Scientific and Technical Information (OSTI), junio de 2005. http://dx.doi.org/10.2172/893451.
Texto completoMcKinley, James P., Chongxuan Liu, Jack Istok y Lee Krumholz. Stability of U(VI)- and Tc(VII) reducing microbial communities to environmental perturbation: a thermodynamic network model and intermediate-scale experiments. Office of Scientific and Technical Information (OSTI), junio de 2006. http://dx.doi.org/10.2172/895882.
Texto completoPerdigão, Rui A. P. Neuro-Quantum Cyber-Physical Intelligence (NQCPI). Synergistic Manifolds, octubre de 2024. http://dx.doi.org/10.46337/241024.
Texto completo